Leave a message

Δευτέρα 9 Δεκεμβρίου 2019

Automatisierte Berechnung und Visualisierung von Komorbiditätsindizes für den Tumorboard-Entscheid

Automatisierte Berechnung und Visualisierung von Komorbiditätsindizes für den Tumorboard-Entscheid:

Laryngo-Rhino-Otol
DOI: 10.1055/a-1058-0171

Einleitung Komorbidität beeinflusst die für die kurative Therapie von Kopf-Hals-Karzinomen (HNC) verfügbaren Optionen. Das manuelle Zusammentragen der Nebenerkrankungen vor der Anmeldung im interdisziplinären Tumorboard (TB) ist zeitintensiv und oft unvollständig. Eine automatisierte Erfassung von nach ICD-10 kodierten Komorbiditätsdaten und deren Darstellung könnte die therapeutische Entscheidungsfindung im TB verbessern sowie bestehenden Informationsbedarf aufzeigen.
Material und Methoden Die ICD-10-Codes unserer Patienten wurden aus 4 Datenbanken (hospital-information-system (HIS*-MED), der klinikinternen Tumordatenbank, OncoFlow® und OncoFunction®) extrahiert. Nach der Datensatzverknüpfung mittels der Python-Programmbibliotheken Pandas und Record Linkage wurden die ICD-10-Codes bezüglich des Charlson-Scores gewichtet und für die Implementierung in OncoFlow visualisiert. Die Kodierqualität wurde am Beispiel Diabetes an einer 1:1 gematchten Stichprobe von 240 Patienten überprüft.
Ergebnisse 29 073 ICD-10-Codes von 2087 Patienten mit HNC wurden extrahiert. Die Anmeldung eines Patienten im TB triggert die sofortige automatische Erfassung und Visualisierung der Daten als Piktogramm in OncoFlow. Dies ermöglicht die schnelle Erfassung und Bewertung der Komorbidität sowie erforderlicher Diagnostik zur Komplettierung der Daten. Die klinikinterne Validationsstudie ergab eine Präzision der durch Datenimport verfügbaren Information zu Diabetes von 95,0 %.
Diskussion Patienten mit HNC weisen häufig für die Therapieentscheidung relevante Nebenerkrankungen auf. Die automatisierte Erfassung der Komorbidität aus administrativen Daten und deren intuitive Darstellung ist ressourcen- und kostengünstig möglich. Voraussetzung ist eine präzise, vollständige Verschlüsselung der Krankheitsdiagnosen.
[...]

© Georg Thieme Verlag KG Stuttgart · New York

Article in Thieme eJournals:
Table of contents  |  Abstract  |  Full text

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

a