Κυριακή 1 Δεκεμβρίου 2019

Design, synthesis and valued properties of surfactin oversimplified analogues

Abstract

Surfactins are important lipopeptides produced by Bacillus subtilis that present strong surface activity. These biosurfactants find applications in various fields, from environmental remediation to medicine. The use of surfactins in remediation is hampered by production costs; the medical applications are also reframed because of the hemolytic activity of the cyclic peptide. To reduce costs and working time, the present work focused on the design, chemical synthesis and characterization of simple linear variants of surfactins having only l-amino acids and lauric acid at the N-terminal. Carboxyl-free and amidated analogues with negative, null and positive net charges at physiological pH were successfully obtained. The synthetic isoforms of surfactins showed high surface activity and ability to inhibit both growth and adhesion of Streptococcus mutans cells. Therefore, these properties make these low-cost synthetic peptides relevant and promising new compounds for science, industry and, mainly, dental care.

Taurine attenuates Cr(VI)-induced cellular and DNA damage: an in vitro study using human erythrocytes and lymphocytes

Abstract

Hexavalent chromium [(Cr(VI)] is widely used in several industries, but human exposure results in multiple organ toxicity. Enhanced generation of free radicals and reactive species is thought to play a key role in Cr(VI)-induced toxicity. We have examined the effect of taurine, a simple sulphur-containing amino acid and an antioxidant, on potassium dichromate [K2Cr2O7, a Cr(VI) compound]-induced cytotoxicity and genotoxicity in human blood cells. Erythrocytes were treated with K2Cr2O7, either alone or after incubation with different concentrations of taurine. Treatment of erythrocytes with K2Cr2O7 alone led to marked increase in generation of reactive oxygen and nitrogen species, lipid and protein oxidation. This was accompanied by decrease in total sulfhydryl and glutathione content and lowered antioxidant power of the cells. This suggests that Cr(VI) induces oxidative stress in the cells. Incubation of erythrocytes with taurine prior to addition of K2Cr2O7, resulted in a concentration-dependent decrease in the generation of reactive oxygen and nitrogen species, mitigation of oxidative stress and amelioration of antioxidant power of these cells. It also restored the activities of several metabolic, antioxidant and membrane-bound enzymes. Cr(VI)-induced damage to erythrocyte membrane and lymphocyte DNA was also significantly attenuated by prior administration of taurine. These results suggest that taurine can function as a chemoprotectant against Cr(VI)-induced oxidative injury and can be potentially used to mitigate the toxic effects of this transition metal ion.

On-resin multicomponent 1,3-dipolar cycloaddition of cyclopentanone–proline enamines and sulfonylazides as an efficient tool for the synthesis of amidino depsipeptide mimics

Abstract

Depsipeptides are biologically active peptide derivatives that possess a high therapeutic interest. The development of depsipeptide mimics characterized by a chemical diversity could lead to compounds with enhanced features and activity. In this work, an on-resin multicomponent procedure for the synthesis of amidino depsipeptide mimics is described. This approach exploits a metal-free 1,3-dipolar cycloaddition of cyclopentanone–proline enamines and sulfonylazides. In this reaction, the obtained primary cycloadduct undergoes a ring opening and molecular rearrangement giving access to a linear sulfonyl amidine functionalized with both a peptide chain and a diazoalkane. The so-obtained diazo function “one pot” reacts with the carboxylic group of N-Fmoc-protected amino acids leading to amidino depsipeptide mimics possessing a C4 aliphatic chain. An important advantage of this procedure is the possibility to easily obtain amidino-functionalized derivatives that are proteolytically stable peptide bond bioisosteres. Moreover, the conformational freedom given by the alkyl chain could promote the obtainment of cyclic depsipeptide with a stabilized secondary structure as demonstrated with both in silico calculations and experimental conformational studies. Finally, labeled depsipeptide mimics can be also synthesized using a fluorescent sulfonylazide in the multicomponent reaction.

Synthesis of homoagmatine and GC–MS analysis of tissue homoagmatine and agmatine: evidence that homoagmatine but not agmatine is a metabolite of pharmacological L-homoarginine in the anesthetized rat

Abstract

Low L-homoarginine (hArg) concentrations in human blood and urine are associated with renal and cardiovascular morbidity and mortality, yet the underlying mechanisms and the biological activities of hArg are elusive. In humans and rats, hArg is metabolized to l-lysine. The aim of the present work was to study hArg metabolism to agmatine (Agm) and homoagmatine (hAgm) in the anesthetized rat. Using a newly developed and validated GC–MS method and a newly synthesized and structurally characterized hAgm we investigated the metabolism of i.p. administered hArg (0, 20, 220, 440 mg/kg) to hAgm and Agm in lung, kidney, liver and heart in anesthetized rats. Our study provides unequivocal evidence that hArg is metabolized to hAgm but not to Agm. Whether hAgm derived from hArg’s metabolism may contribute to the pathophysiological significance of endogenous hArg and for the favoured effects of pharmacological hArg remains to be demonstrated. The biology of hArg warrants further investigations.

Correction to: Rapid acidolysis of benzyl group as a suitable approach for syntheses of peptides naturally produced by oxidative stress and containing 3-nitrotyrosine
This errata is for paper “Rapid acidolysis of benzyl group as a suitable approach for syntheses

Effects of histidine load on ammonia, amino acid, and adenine nucleotide concentrations in rats

Abstract

The unique capability of proton buffering is the rationale for using histidine (HIS) as a component of solutions for induction of cardiac arrest and myocardial protection in cardiac surgery. In humans, infusion of cardioplegic solution may increase blood plasma HIS from ~ 70 to ~ 21,000 µM. We examined the effects of a large intravenous dose of HIS on ammonia and amino acid concentrations and energy status of the body. Rats received 198 mM HIS intravenously (20 ml/kg) or vehicle. Samples of blood plasma, urine, liver, and soleus (SOL) and extensor digitorum longus (EDL) muscles were analysed at 2 or 24 h after treatment. At 2 h after HIS load, we found higher HIS concentration in all examined tissues, higher urea and ammonia concentrations in blood and urine, lower ATP content and higher AMP/ATP ratio in the liver and muscles, higher concentrations of almost all examined amino acids in urine, and lower glycine concentration in blood plasma, liver, and muscles when compared with controls. Changes in other amino acids were tissue dependent, markedly increased alanine and glutamate in the blood and the liver. At 24 h, the main findings were lower ATP concentrations in muscles, lower concentrations of branched-chain amino acids (BCAA; valine, leucine, and isoleucine) in blood plasma and muscles, and higher carnosine content in SOL when compared with controls. It is concluded that a load of large HIS dose results in increased ammonia levels and marked alterations in amino acid and energy metabolism. Pathogenesis is discussed in the article.

Susceptibility of protein therapeutics to spontaneous chemical modifications by oxidation, cyclization, and elimination reactions

Abstract

Peptides and proteins are preponderantly emerging in the drug market, as shown by the increasing number of biopharmaceutics already approved or under development. Biomolecules like recombinant monoclonal antibodies have high therapeutic efficacy and offer a valuable alternative to small-molecule drugs. However, due to their complex three-dimensional structure and the presence of many functional groups, the occurrence of spontaneous conformational and chemical changes is much higher for peptides and proteins than for small molecules. The characterization of biotherapeutics with modern and sophisticated analytical methods has revealed the presence of contaminants that mainly arise from oxidation- and elimination-prone amino-acid side chains. This review focuses on protein chemical modifications that may take place during storage due to (1) oxidation (methionine, cysteine, histidine, tyrosine, tryptophan, and phenylalanine), (2) intra- and inter-residue cyclization (aspartic and glutamic acid, asparagine, glutamine, N-terminal dipeptidyl motifs), and (3) β-elimination (serine, threonine, cysteine, cystine) reactions. It also includes some examples of the impact of such modifications on protein structure and function.

Oral taurine improves critical power and severe-intensity exercise tolerance

Abstract

This study investigated the effects of acute oral taurine ingestion on: (1) the power–time relationship using the 3-min all-out test (3MAOT); (2) time to exhaustion (TTE) 5% > critical power (CP) and (3) the estimated time to complete (Tlim) a range of fixed target intensities. Twelve males completed a baseline 3MAOT test on a cycle ergometer. Following this, a double-blind, randomised cross-over design was followed, where participants were allocated to one of four conditions, separated by 72 h: TTE + taurine; TTE + placebo; 3MAOT + taurine; 3MAOT + placebo. Taurine was provided at 50 mg kg−1, whilst the placebo was 3 mg kg−1 maltodextrin. CP was higher (P < 0.05) in taurine (212 ± 36 W) than baseline (197 ± 40 W) and placebo (193 ± 35 W). Work end power was not affected by supplement (P > 0.05), yet TTE 5% > CP increased (P < 0.05) by 1.7 min after taurine (17.7 min) compared to placebo (16.0 min) and there were higher (P < 0.001) estimated Tlim across all work targets. Acute supplementation of 50 mg kg−1 of taurine improved CP and estimated performance at a range of severe work intensities. Oral taurine can be taken prior to exercise to enhance endurance performance.

Preclinical evaluation of a 64 Cu-labeled disintegrin for PET imaging of prostate cancer

Abstract

A novel recombinant disintegrin, vicrostatin (VCN), displays high binding affinity to a broad range of human integrins in substantial competitive biological advantage over other integrin-based antagonists. In this study, we synthesized a new 64Cu-labeled VCN probe and evaluated its imaging properties for prostate cancer in PC-3 tumor-bearing mice. Macrocyclic chelating agent 1,8-diamino-3,6,10,13,16,19-hexaazabicyclo[6.6.6]-eicosine (DiAmSar) was conjugated with PEG unit and followed by coupling with VCN. The precursor was then radiolabeled with positron emitter 64Cu (t1/2 = 12.7 h) in ammonium acetate buffer to provide 64Cu-Sar-PEG-VCN, which was subsequently subjected to in vitro studies, small animal PET, and biodistribution studies. The PC-3 tumor-targeting efficacy of 64Cu-Sar-PEG-VCN was compared to a cyclic RGD peptide-based PET probe (64Cu-Sar-RGD). 64Cu labeling was achieved in 75% decay-corrected yield with radiochemical purity of  > 98%. The specific activity of 64Cu-Sar-PEG-VCN was estimated to be 37 MBq/nmol. MicroPET imaging results showed that 64Cu-Sar-PEG-VCN has preferential tumor uptake and good tumor retention in PC-3 tumor xenografts. As compared to 64Cu-Sar-RGD, 64Cu-Sar-PEG-VCN produces higher tumor-to-muscle (T/M) imaging contrast ratios at 2 h (4.66 ± 0.34 vs. 2.88 ± 0.46) and 24 h (4.98 ± 0.80 vs. 3.22 ± 0.30) post-injection (pi) and similar tumor-to-liver ratios at 2 h (0.43 ± 0.09 vs. 0.37 ± 0.04) and 24 h (0.57 ± 0.13 vs. 0.52 ± 0.07) pi. The biodistribution results were consistent with the quantitative analysis of microPET imaging, demonstrating good T/M ratio (2.73 ± 0.36) of 64Cu-Sar-PEG-VCN at 48 h pi in PC-3 tumor xenografts. For both microPET and biodistribution studies at 48 h pi, the PC-3 tumor uptake of 64Cu-Sar-PEG-VCN is lower than that of 64Cu-Sar-RGD. 64Cu-Sar-PEG-VCN has the potential for in vivo imaging of prostate cancer with PET, which may provide a unique non-invasive method to quantitatively localize and characterize prostate cancer.

Evaluation of polyamines as marker of melanoma cell proliferation and differentiation by an improved high-performance liquid chromatographic method

Abstract

The differentiation therapy is focused on the identification of new agents able to impair the proliferative and metastatic potential of cancer cells through the induction of differentiation. Although several markers of cell differentiation on tumor cells have been identified, their causal relationship with neoplastic competence has not been characterized in sufficient detail to propose their use as new pharmacological targets useful for the design of new differentiation agents. Polyamine level in cancer cells and in body fluids was proposed as potential marker of cell proliferation and differentiation. The main advantage of this marker is the possibility to evaluate the antineoplastic activity of new drugs able to induce cell differentiation and consequently to inhibit tumor growth and metastasis. The presented report shows a simply and highly reproducible reverse-phase high-performance liquid chromatographic (HPLC) method for the determination of ortho-phthalaldehyde (OPA) derivatives of polyamines: putrescine (PUT), cadaverine (CAD), spermidine (SPD) and spermine (SPM). The novelty of this method is the fluorescence response for OPA-derivate of SPM, generally low in other procedures, that has been significantly improved by the use of a fully endcapped packing material with minimal silanol interactions. The limits of detection for PUT, CAD, SPD and SPM were 0.6, 0.7, 0.8, and 0.4 pmol/mL, respectively. The analysis time was ≤ 20 min, and the relative recovery rate was of about 97%. To verify the usefulness of this method, it has been validated in a murine melanoma cell line (B16-F10) treated with two theophylline derivatives (namely 8-chlorotheophylline and 8-bromotheophylline). These two compounds increased the activity of tissue transglutaminase (TG2) and the synthesis of melanin, two recognized markers of melanoma cell differentiation, and significantly reduced the levels of intracellular polyamines.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου