Κυριακή 1 Δεκεμβρίου 2019

Minimal-invasive Techniken zur Stabilisierung am Beckenring und Azetabulum

Die operative Behandlung des Ulna-Impaction-Syndroms

Zusammenfassung

Operationsziel

Verkürzung der Ulna zur Druckentlastung des ulnokarpalen Handgelenkkompartiments.

Indikationen

Anlagebedingtes und posttraumatisches Ulna-Impaction-Syndrom.

Kontraindikationen

Arthrose oder Deformierung des distalen Radioulnargelenks.

Operationstechnik

Osteotomie mit Resektion einer definierten Knochenscheibe, rotationsgesicherte Verkürzungsosteotomie im distalen Drittel der Ulna im Winkel von 45° oder 90° durch Anlage der Hilfsvorrichtung mit Osteotomielehre, Osteosynthese mit winkelstabiler Platte unter Zuhilfenahme der Hilfsvorrichtung mit Kompressionsspindel.

Nachbehandlung

Anlegen einer Oberarmgipsschiene oder wenn möglich einer Oberarmorthese zur Ausschaltung von Pro- und Supination für 3 Wochen, Belastungsaufbau nach knöcherner Konsolidierung.

Ergebnisse

Im Zeitraum Juni 2016 bis März 2018 wurde bei 17 Patienten eine Ulnaverkürzung mit einem neuen winkelstabilen Plattensystem durchgeführt. Es konnten 15 Patienten mit kompletten Daten nachuntersucht werden. Postoperativ wurde eine signifikante Reduktion der Schmerzsymptomatik (VAS, visuelle Analogskala, 0–10) um 65 % (7 prä- und 2,5 postoperativ; p < 0,05) sowie eine signifikante Verbesserung des DASH-Score (0–100, „Disabilities of Arm, Shoulder and Hand“) um 49 % (47 prä- und 24 postoperativ; p < 0,05) beobachtet. Bei allen Patienten kam es zu einer vollständigen knöchernen Heilung nach durchschnittlich 4 Monaten. Die Patientenzufriedenheit war hoch.

Preoperative planning and safe intraoperative placement of iliosacral screws under fluoroscopic control

Abstract

Objective

Preoperative planning of the starting point and safe trajectory for iliosacral screw (SI screw) fixation using CT scans for safe and accurate fluoroscopically controlled percutaneous SI screw placement.

Indications

Transalar and transforaminal sacral fractures. SI joint disruptions and fracture-dislocations. Non- or minimally displaced spinopelvic dissociation injuries.

Contraindications

Transiliac instabilities. Sacral fractures with neurological impairment requiring decompression. Relevant residual displacement after closed reduction attempts. Insufficient fluoroscopic visualization of the anatomical landmarks of the upper sacrum.

Surgical technique

Preoperative planning of the starting point and the safe screw trajectory using CT scans and two-dimensional multiplanar reformation tools. Fluoroscopically guided identification of the starting point using the lateral view according to preoperative planning. Advancing the guidewire under fluoroscopic control using inlet and outlet views according to the planned trajectory. Predrilling and placement of 6.5 mm cannulated screws.

Postoperative management

Weightbearing as tolerated using crutches. Immediate CT scan in case of postoperative neurological impairment. Generally no screw removal.

Results

Fifty-nine screws were placed in 34 patients using the described technique. There were 2 cases of screw malpositioning (anatomical landmarks inadequately identified and fluoroscopically controlled SI screw fixation should thus not have been performed at all; in a case with sacral dysmorphism, preoperative planning suggested a posterior and/or caudal S1 starting point, respectively, but intraoperatively, selection of a different starting point and screw trajectory resulted in screw malpositioning with iatrogenic L5 nerve palsy).

Fluoroscopically guided acetabular posterior column screw fixation via an anterior approach

Abstract

Objective

Safe posterior column screw fixation via an anterior approach under two-dimensional fluoroscopic control.

Indications

Anterior column with posterior hemitransverse fractures (ACPHF); transverse fractures; two-column fractures and T‑type fractures without relevant residual displacement of the posterior column after reduction of the anterior column and the quadrilateral plate.

Contraindication

Acetabular fractures requiring direct open reduction via a posterior approach; very narrow osseous corridor in preoperative planning; insufficient intraoperative fluoroscopic visualization of the anatomical landmarks.

Surgical technique

Preoperative planning of the starting point and screw trajectory using a standard pelvic CT scan and a multiplanar reconstruction tool. Intraoperative fluoroscopically controlled identification of the starting point using the anterior–posterior (ap) view. Advancing the guidewire under fluoroscopic control using the lateral–oblique view. Lag screw fixation of the posterior column with cannulated screws.

Postoperative management

Partial weight bearing as advised by the surgeon. Postoperative CT scan for the assessment of screw position and quality of reduction of the posterior column. Generally no implant removal.

Results

In a series of 100 pelvic CT scans, the mean posterior angle of the ideal posterior column screw trajectory was 28.0° (range 11.1–46.2°) to the coronal plane and the mean medial angle was 21.6° (range 8.0–35.0°) to the sagittal plane. The maximum screw length was 106.3 mm (range 82.1–135.0 mm). Twelve patients were included in this study: 10 ACPHF and 2 transverse fractures. The residual maximum displacement of the posterior column fracture component in the postoperative CT scan was 1.4 mm (0–4 mm). There was one intraarticular screw penetration and one perforation of the cortical bone in the transition zone between the posterior column and the sciatic tuber without neurological impairment.

3D image-guided surgery for fragility fractures of the sacrum

Abstract

Objective

Stabilizing sacral fragility fractures without radiation exposure to the surgical team.

Indications

Non-displaced or minimally displaced unilateral or bilateral transalar, transforaminal or central sacral fractures in weak and osteoporotic bone.

Contraindications

Displaced or highly unstable sacral fractures. Patients under therapeutic anticoagulation. Patients needing fast track orthopedic surgery.

Surgical technique

Prone position. Reference clamp installation on posterior iliac crest. Initial 3D scan of posterior pelvic ring. Image-guided virtual determination of 2–3 interforaminal iliosacroiliac trajectories in sacral vertebrae I and II. Lateral transgluteal mini-open approach. 3D image-guided insertion of 2–3 guide wires along planned trajectories. 3D-scan for controlling guide wire positions. Virtual determination of screw lengths. Cortical drilling and cannulated screw insertion along guide wires. Radiological documentation.

Follow-up

Clinical and radiological follow-up after 12 weeks, 12 and 24 months including radiographs in anteroposterior, lateral, inlet and outlet views.

Results

From October 2011 until October 2016 a total of 124 sacral fracture sites (in sacral vertebrae I and II) were treated with 120 navigated sacral screws in 52 patients (48 females, 4 males; mean age 76 ± 10 years, range 36–90 years) using 3D image guidance for screw placement. Image-guidance accuracy was 99.2% (119/120 screws correctly placed). Complications comprised revision surgery for subfascial hematoma evacuation (n = 1) and screw removal due to loosening after 12 weeks (n = 2). Four patients died before final follow-up. Mean pain visual analogue scale (VAS) decreased from 8.9 ± 1.1 (presurgery value) over 3.6 ± 1.7 (postsurgery value) to 1.8 ± 1.9 (2-year follow-up value), mean Oswestry disability index (ODI) improved from 86.2 ± 4.9% (presurgery value) over 28.5 ± 9.5% (postsurgery value) to 23.3 ± 13.7% (2-year follow-up value).

Sichere Verschraubung des Iliosakralgelenks ohne intraoperative Computertomographie, digitale Volumentomographie oder Navigationssystem

Zusammenfassung

Operationsziel

Verbesserung der konventionellen Iliosakralgelenk-(ISG-)Schraubenpositionierung durch eine dezidierte präoperative Planung mit einer DICOM-Workstation (Digital Imaging and Communications in Medicine – internationaler Standard zur Speicherung und zum Austausch von Informationen im medizinischen Bilddatenmanagement), wenn technische Hilfsmittel wie Navigationssystem, intraoperative digitale Volumentomographie (DVT) oder Computertomographie (CT) nicht vorhanden sind.

Indikationen

Nicht oder gering dislozierte Längsfrakturen des Sakrums vom Typ Denis I und II sowohl ein- als auch beidseitig und Beckenringfrakturen vom Typ B, eventuell in Kombination mit ventraler Versorgung.

Kontraindikationen

Dislozierte Frakturen vom Typ Denis II oder III, solche mit zentraler Trümmerzone sowie kreislaufinstabile Patienten, die im Rahmen der Notfallversorgung zu stabilisieren sind.

Operationstechnik

Aus einem vorhandenen CT-Volumen-Datensatz werden mit üblicher DICOM-Software (z. B. SiemensVia® oder Sectra®) präoperativ virtuelle konventionelle Standardebenen-Röntgenbilder errechnet, in welche die Orientierungspunkte einer Operation, wie Schraubeneintritts- und Endpunkt, hineinprojiziert werden. Während der Operation wird die Orientierung durch den direkten Vergleich der zuvor ermittelten virtuellen Bilder mit den Durchleuchtungsbildern stark vereinfacht.

Weiterbehandlung

Kontroll-CT nach Operation, schmerzorientierte funktionelle Mobilisation mit Teilbelastung und Beckenübersichtsaufnahmen nach 6 und 12 Wochen.

Ergebnisse

In einem Zeitraum von 13 Monaten wurden bei 19 Patienten insgesamt 26 ISG-Schrauben nach der hier beschriebenen Methode versorgt (alle durch denselben Operateur). In der postoperativen CT lagen lediglich drei Schrauben nicht wie geplant. Bei einer Schraube wurde eine erstgradige Kortikalisperforation nach Smith und bei zwei weiteren eine zweitgradige Kortikalisperforation gesehen. Revisionen aufgrund der Fehllagen waren nicht erforderlich und neurologische Defizite nicht vorhanden. Die Schnitt-Naht-Zeit lag im Mittel bei 33 min und die Durchleuchtungszeit bei 3,8 min.

Supercapsular percutaneously assisted (SuperPath) approach in total hip arthroplasty

Abstract

Objective

Portal assisted minimally invasive total hip arthroplasty without dislocation of the femoral head with preservation of the hip capsule and the external rotators in the lateral decubitus position for rapid recovery with the option of expandability to a mini posterior or classic posterolateral approach at any time.

Indications

Primary and secondary arthritis of the hip, femoral head necrosis, femoral neck fracture.

Contraindications

Severe anatomical disorders of the proximal femur, congenital high hip dysplasia, implanted hardware in the trochanteric region, local and systemic infections.

Surgical technique

Lateral decubitus position, skin incision of 6–10 cm from the tip of the greater trochanter in line with the femoral axis, spread gluteus maximus, using the interval between the piriformis tendon posterior and gluteus minimus/medius muscle anterior, incision of the capsule, remove bone of the lateral neck and head, intramedullary reaming and broaching of the femur, osteotomy of the femoral neck with the femoral broach left in situ, remove the femoral head, preparation of the acetabulum using a cannula posterior of the femur, cup impaction and implantation of the inlay, trial modular neck and head, reposition, test of leg length, impingement and stability, x‑ray, implantation of the definitive components, closure of the capsule, standard wound closure.

Postoperative management

Full weight bearing as possible, no restrictions of postoperative movement.

Results

The first 150 patients were operated from January 2016 to July 2017 without leg length discrepancy more than 5 mm; one transfusion was needed. There were two subluxations, one wound dehiscence and one femoral diaphyseal fracture 4 weeks after surgery. There was no radiological loosening of the components after a mean of 16 months.

Bilaterale mikrochirurgische Dekompression der lumbalen Spinalkanalstenose über einen unilateralen Zugang

Zusammenfassung

Operationsziel

Mikrochirurgische beidseitige Dekompression des zentralen Spinalkanals einschließlich des Rezessus lateralis über einen interlaminären unilateralen Zugang mit möglichst geringem Zugangstrauma.

Indikationen

Degenerative zentrale, laterale und foraminale lumbale, mono-, bi- und/oder multisegmentale Spinalkanalstenosen mit Bein‑, Gesäß- oder Leistenschmerzen.

Kontraindikationen

Nicht ausgeschöpfte konservative Verfahren. Fehlendes schwerwiegendes neurologisches Defizit.

Operationstechniken

Minimal-invasive, muskelschonende und stabilitätserhaltende beidseitige Dekompression des lumbalen Spinalkanals über einen mikrochirurgischen, unilateralen, interlaminären Zugang in sog. Cross-over-Technik.

Weiterbehandlung

Frühzeitige, frühfunktionelle Mobilisation 4–6 h postoperativ. Leichte sportliche Belastungen nach ca. 2 Wochen (z. B. Fahrradergometrie, Schwimmen). Gleiches gilt für die uneingeschränkte Aufnahme täglicher Aktivitäten und Arbeitsfähigkeit. Bei körperlich anstrengendem Beruf ca. 4 Wochen Arbeitsunfähigkeit. Optional wird das Tragen eines weichen Lumbalmieders in den ersten 4 postoperativen Wochen empfohlen.

Ergebnisse

Die klinischen Erfolgsraten der direkten, mikrochirurgischen Dekompression liegen in Metaanalysen sowie großen Fallserien zwischen 73,5–95 %. Die Reoperationsraten sind gering (0,5–10 %).

Femoral osteotomies for the treatment of avascular necrosis of the femoral head

Abstract

Objective

Unloading of the area of necrosis out of the weight-bearing region by shifting healthy bone in the main weight-bearing area, which may delay the progression of the necrosis and enable healing.

Indications

Circumscribed osteonecrosis of the femoral head without advanced degenerative signs (Tönnis grade ≤ 1) in the relatively young patient (age < 50 years).

Contraindications

Radiographic joint degeneration (> Tönnis grade 1); extensive avascular necrosis (Kerboul angle > 240°); advanced lesions (≥ Association Research Circulation Osseous [ARCO] classification 3b).

Surgical technique

By performing a surgical hip dislocation, full access to the hip joint is gained. A femoral varus osteotomy is used to turn the necrotic lesion of the femoral head out of the central weight-bearing area and more medially. Osteosynthesis is performed with an angular stable screw or a blade plate. Via a trapdoor procedure, direct debridement and autologous bone grafting from the trochanter major is possible. The cartilage flap is preserved whenever possible or supplanted by an autologous matrix-induced chondrogenesis (AMIC).

Postoperative management

A passive motion device is installed during hospital stay beginning immediately after surgery to prevent capsular adhesions. After surgery, patients are mobilized with partial weight-bearing of 15 kg with the use of crutches for at least 8 weeks. Forced abduction and adduction as well as flexion of more than 90° are restricted to protect the trochanteric osteotomy. After radiographic confirmation of healing at the 8‑week follow-up, stepwise return to full weight-bearing is allowed and abductor training is initiated.

Results

Nine patients (10 hips) with osteonecrosis of the femoral head were treated with surgical hip dislocation and varus osteotomy. Six hips were treated with autologous bone grafting, four hips with antegrade drilling. Chondral lesions were sutured in four cases, whereas two cases needed an AMIC treatment. The mean age at operation was 29 ± 9 years (20–49), and the mean follow-up time for all patients was 3 ± 2 years (1–7). Conversion to a total hip prosthesis was required for one hip with progressing arthrosis. The other nine hips showed no progression of necrosis and an improved clinical outcome. Complications were pseudarthrosis of the femoral osteotomy and pseudarthrosis of the greater trochanter.

Nontraumatic avascular necrosis of the femoral head

Abstract

Objective

The aim is to address core decompression and pathologies of the femoral head, treating them during the same procedure. Furthermore, radiation exposure will be reduced.

Indications

Femoral head necrosis ARCO (Association Research Circulation Osseous) stages I–III.

Contraindications

Progressive femoral head necrosis as ARCO stages IIIC–IV.

Surgical technique

Arthroscopically navigated core decompression of the femoral head using an established optoelectronic system with fluoro-free software module. First, hip joint arthroscopy was performed and further pathologies were treated. Second, core decompression was navigated by a navigation pointer and drill sleeve to reach the correct target point. After visualization, the procedure is repeated 3–5 times.

Postoperative management

Limited weight bearing of the operated leg (20 kg) for 10–14 days. Active or passive continuous motion machine for 4 weeks. Adjuvant postoperative indomethacin therapy for 10 days to reduce pain and bone marrow edema.

Results

From May 2018 to January 2019, 7 patients (male = 4; 40 ± 9 years) underwent arthroscopically navigated core decompression with 2 (29%) and 5 (71%) patients being classified as ARCO II and III, respectively. Preoperatively, all patients reported load-dependent pain. In all cases, we could identify synovitis, which results in soft tissue release and synovectomy. Furthermore, 4 of 7 patients had an additional labrum lesion, which is addressed by refixation or shrinking.

Discussion

Compared to the conventional technique, this fluoro-free navigation procedure allows more precise drilling. Moreover, additional pathologies, as found in all our cases, could be simultaneously addressed. The intraoperative radiation exposure for the patient and surgical team could also be reduced. Although arthroscopically assisted core decompression requires more preparation time, there are advantages over conventional surgery.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου