Τετάρτη 10 Ιουλίου 2019

Journal of Physiology and Biochemistry

ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1

Abstract

N6-Methyladenosine (m6A) is the most common posttranscriptional modification of RNA and plays critical roles in cancer pathogenesis. However, the biological function of long noncoding RNA (lncRNA) methylation remains unclear. As a demethylase, ALKBH5 (alkylation repair homolog protein 5) is involved in mediating methylation reversal. The purpose of this study was to investigate lncRNA m6A modification and its role in gastric cancer (GC). Bioinformatics predicted interactions of ALKBH5 with lncRNAs. Five methods were employed to assess the function of nuclear paraspeckle assembly transcript 1 (NEAT1), including gene silencing, RT-PCR, separation of nuclear and cytoplasmic fractions, scrape motility assays, and transwell migration assays. Then, m6A RNA immunoprecipitation and immunofluorescence were used to detect methylated NEAT1 in GC cells. Rescue assays were performed to define the relationship between NEAT1 and ALKBH5. NEAT1 is a potential binding lncRNA of ALKBH5. NEAT1 was overexpressed in GC cells and tissue. Additional experiments confirmed that knockdown of NEAT1 significantly repressed invasion and metastasis of GC cells. ALKBH5 affected the m6A level of NEAT1. The binding of ALKBH5 and NEAT1 influences the expression of EZH2 (a subunit of the polycomb repressive complex) and thus affects GC invasion and metastasis. Our findings indicate a novel mechanism by which ALKBH5 promotes GC invasion and metastasis by demethylating the lncRNA NEAT1. They may be potential therapeutic targets for GC.

Glutathione-dependent enzyme activities of peripheral blood mononuclear cells decrease during the winter season compared with the summer in normal-weight and severely obese adolescents

Abstract

Oxidative stress-related inflammation is known to play a vital role in obesity-associated cardiovascular disease, contributing to the early stages of the pathology as well as during its development. Therefore, it is of great interest to understand how obesity-induced stress modulates antioxidant enzyme activity during puberty. To this end, 27 severely obese adolescents (body mass index > 30, z-score > 3.7) were recruited from a paediatric weight management centre. Eighteen were recruited during the summer and nine in the winter. All underwent a 4-month weight loss programme consisting in diet and physical activity. Twenty normal-weight age-matched adolescents were recruited from the same geographical area to serve as controls. Blood samples were extracted, and antioxidant enzyme activities were determined in peripheral blood mononuclear cells (PBMCs) and erythrocytes. The enzymes studied included catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase. Severely obese adolescents presented lower PBMC-glutathione reductase activity than their corresponding normal-weight counterparts. In addition, glutathione-dependent activities tended to be lower in both groups during the winter compared with summer. These changes coincided with differences in circulating vitamin D levels. Results may suggest that season-dependent factors such as vitamin D could affect glutathione-dependent activities in severely obese as well as in normal-weight adolescents.

Impact of different methods of induction of cellular hypoxia: focus on protein homeostasis signaling pathways and morphology of C2C12 skeletal muscle cells differentiated into myotubes

Abstract

Hypoxia, occurring in several pathologies, has deleterious effects on skeletal muscle, in particular on protein homeostasis. Different induction methods of hypoxia are commonly used in cellular models to investigate the alterations of muscular function consecutive to hypoxic stress. However, a consensus is not clearly established concerning hypoxia induction methodology. Our aim was to compare oxygen deprivation with chemically induced hypoxia using cobalt chloride (CoCl2) or desferrioxamine (DFO) on C2C12 myotubes which were either cultured in hypoxia chamber at an oxygen level of 4% or treated with CoCl2 or DFO. For each method of hypoxia induction, we determined their impact on muscle cell morphology and on expression or activation status of key signaling proteins of synthesis and degradation pathways. The expression of HIF-1α increased whatever the method of hypoxia induction. Myotube diameter and protein content decreased exclusively for C2C12 myotubes submitted to physiological hypoxia (4% O2) or treated with CoCl2. Results were correlated with a hypophosphorylation of key proteins regulated synthesis pathway (Akt, GSK3-β and P70S6K). Similarly, the phosphorylation of FoxO1 decreased and the autophagy-related LC3-II was overexpressed with 4% O2 and CoCl2 conditions. Our results demonstrated that in vitro oxygen deprivation and the use of mimetic agent such as CoCl2, unlike DFO, induced similar responses on myotube morphology and atrophy/hypertrophy markers. Thus, physiological hypoxia or its artificial induction using CoCl2 can be used to understand finely the molecular changes in skeletal muscle cells and to evaluate new therapeutics for hypoxia-related muscle disorders.

Has the adipokine profile an influence on the catch-up growth type in small for gestational age infants?

Abstract

Infants born small for gestational age (SGA) are at increased risk of perinatal morbidity, persistent short stature, and metabolic alterations in later life. Moreover, the post-natal growth pattern of SGA infants may be an important contributor to health outcomes later in life, which can be influenced by adipokines. The aims of this study were to compare plasma adipokine profiles (leptin, adiponectin, vaspin, chemerin, and nephroblastoma overexpressed (NOV/CCN3)) among SGA newborns aged 3 months, with low, normal, or high catch-up, to search for potential differences between males and females and to analyze the evolution of several adipokines in plasma from SGA newborns between 3 and 24 months. This prospective, longitudinal study was addressed in SGA Caucasian subjects at Hospital Universitario de Álava-Txagorritxu. We observed that infants with fast catch-up showed significantly lower birth weight than the other two groups. As far as adipokines are concerned, they could have an influence on catch-up type because differences among the three experimental groups were found. It may be proposed that health prognoses in infants with slow and fast catch-up are opposite, not only in adulthood but also during their first months. Finally, adipokine evolution patterns during the first 24 months of age differ, depending on the adipokine, and 24-month-old males show lower levels of leptin, adiponectin, and omentin than females.

Obesity and aging affects skeletal muscle renin–angiotensin system and myosin heavy chain proportions in pre-diabetic Zucker rats

Abstract

There is a gap in the knowledge regarding regulation of local renin–angiotensin system (RAS) in skeletal muscle during development of obesity and insulin resistance in vivo. This study evaluates the obesity- and age-related changes in the expression of local RAS components. Since RAS affects skeletal muscle remodelling, we also evaluated the muscle fibre type composition, defined by myosin heavy chain (MyHC) mRNAs and protein content. Gene expressions were determined by qPCR and/or Western blot analysis in musculus quadriceps of 3- and 8-month-old male obese Zucker rats and their lean controls. The enzymatic activity of aminopeptidase A (APA) was determined flourometrically. Activation of renin receptor (ReR)/promyelocytic leukaemia zinc finger (PLZF) negative feedback mechanism was observed in obesity. The expression of angiotensinogen and AT1 was downregulated by obesity, while neutral endopeptidase and AT2 expressions were upregulated in obese rats with aging. Skeletal muscle APA activity was decreased by obesity, which negatively correlated with the increased plasma APA activity and plasma cholesterol. The expression of angiotensin-converting enzyme (ACE) positively correlated with MyHC mRNAs characteristic for fast-twitch muscle fibres. The obesity- and age-related alterations in the expression of both classical and alternative RAS components suggest an onset of a new equilibrium between ACE/AngII/AT1 and ACE2/Ang1–7/Mas at lower level accompanied by increased renin/ReR/PLZF activation. Increased APA release from the skeletal muscle in obesity might contribute to increased plasma APA activity. There is a link between reduced ACE expression and altered muscle MyHC proportion in obesity and aging.

HULC functions as an oncogene in ovarian carcinoma cells by negatively modulating miR-125a-3p

Abstract

The aberrant expression of highly upregulated in liver cancer (HULC) has been reported to participate in ovarian cancer development. A recent research has revealed that HULC-modulated microRNAs (miRNAs) in tumorigenesis. To confirm the functions of HULC on tumorigenesis of ovarian, we explored the effects of HULC expression on ovarian cancer cell development, as well as the underlying mechanism. We transfected SKOV3 cells with pEX-HULC, sh-HULC, and miR-125a-3p mimic as well as their corresponding negative controls (pEX-3, sh-NC, and NC) to alter the expression of HULC and miR-125a-3p, which were analyzed by quantitative reverse transcription PCR (qRT-PCR). Expression of proteins associated with cell cycle, apoptosis, and signaling pathways was determined by Western blot assay. The proliferation, apoptosis, migration, and invasion were explored by bromodeoxyuridine (BrdU) incorporation assay, Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) method, and transwell migration and invasion assays, respectively. HULC overexpression promoted proliferation, migration, and invasion, while inhibited apoptosis of SKOV3 cells. In addition, HULC negatively regulated the expression of miR-125a-3p. Besides, miR-125a-3p mimic reversed the effects of HULC on proliferation, migration, and invasion as well as apoptosis of SKOV3 cells. Moreover, we found that HULC enhanced phosphorylated expression of regulatory factors in phosphatidylinositol 3 kinase/protein kinase B/mammalian targets of rapamycin (PI3K/AKT/mTOR) signaling pathway by downregulating expression of miR-125a-3p. Overexpression of HULC promoted ovarian carcinoma development by activating PI3K/AKT/mTOR signaling pathway via downregulating miR-125a-3p.

Melatonin induces reactive oxygen species generation and changes in glutathione levels and reduces viability in human pancreatic stellate cells

Abstract

In this study, the effects of pharmacological concentrations of melatonin (1 μM–1 mM) on human pancreatic stellate cells (HPSCs) have been examined. Cell type–specific markers and expression of melatonin receptors were analyzed by western blot analysis. Changes in intracellular free Ca2+ concentration were followed by fluorimetric analysis of fura-2–loaded cells. Reduced glutathione (GSH) and oxidized glutathione (GSSG) levels were determined by fluorescence techniques. Production of reactive oxygen species (ROS) was monitored following 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate acetyl ester and MitoSOX™ Red–derived fluorescence. Cell viability was studied using the AlamarBlue® test. Cultured cells expressed markers typical of stellate cells. However, cell membrane receptors for melatonin could not be detected. Thapsigargin, bradykinin, or melatonin induced changes in intracellular free Ca2+ concentration. In the presence of the indole, a decrease in the GSH/GSSG ratio was observed that depended on the concentration of melatonin used. Furthermore, the indole evoked a concentration-dependent increase in ROS production in the mitochondria and in the cytosol. Finally, melatonin decreased HPSC viability in a time and concentration-dependent manner. We conclude that melatonin, at pharmacological concentrations, induces changes in the oxidative state of HPSC. This might regulate cellular viability and could not involve specific plasma membrane receptors.

Tyrosine nitration of mitochondrial proteins during myocardial ischemia and reperfusion

Abstract

Myocardial ischemia reperfusion is associated with mitochondrial dysfunction and increased formation of reactive oxygen/nitrogen species. The main purpose of this study was to assess the role of tyrosine nitration of mitochondrial proteins in postischemic contractile dysfunction known as myocardial stunning. Isolated Langendorff-perfused rat hearts were subjected to 20-min global ischemia followed by 30-min reperfusion. The reperfused hearts showed marked decline in left ventricular developed pressure, maximal rate of contraction (+dP/dt), and maximal rate of relaxation (−dP/dt). Immunofluorescence and ELISA assays demonstrated enhanced protein tyrosine nitration in reperfused hearts. Using two-dimensional gel electrophoresis and MALDI-TOF/TOF mass spectrometry, eight mitochondrial proteins were identified to be nitrated after ischemia reperfusion. These proteins are crucial in mitochondrial electron transport, fatty acid oxidation, tricarboxylic acid cycle, ATP synthesis, and control of high-energy phosphates. The proteome data also indicated reduced abundance in several of nitrated proteins. The results suggest that these changes may contribute to inhibition of aconitase activity but are unlikely to affect electron transport chain activity. Whether tyrosine nitration of mitochondrial proteins can be considered the contributing factor of postischemic contractile dysfunction remains to be explored.

GLUT1 and GLUT8 support lactose synthesis in Golgi of murine mammary epithelial cells

Abstract

The mammary gland increases energy requirements during pregnancy and lactation to support epithelial proliferation and milk nutrients synthesis. Lactose, the principal carbohydrate of the milk, is synthetized in the Golgi of mammary epithelial cells by lactose synthase from glucose and UPD galactose. We studied the temporal changes in the expression of GLUT1 and GLUT8 in mammary gland and their association with lactose synthesis and proliferation in BALB/c mice. Six groups were used: virgin, pregnant at 2 and 17 days, lactating at 2 and 10 days, and weaning at 2 days. Temporal expression of GLUT1 and GLUT8 transporters by qPCR, western blot and immunohistochemistry, and its association with lactalbumin, Ki67, and cytokeratin 18 within mammary tissue was studied, along with subcellular localization. GLUT1 and GLUT8 transporters increased their expression during mammary gland progression, reaching 20-fold increasing in GLUT1 mRNA at lactation (p < 0.05) and 2-fold at protein level for GLUT1 and GLUT8 (p < 0.05 and 0.01, respectively). The temporal expression pattern was shared with cytokeratin 18 and Ki67 (p < 0.01). Endogenous GLUT8 partially co-localized with 58 K protein and α-lactalbumin in mammary tissue and with Golgi membrane–associated protein 130 in isolated epithelial cells. The spatial-temporal synchrony between expression of GLUT8/GLUT1 and alveolar cell proliferation, and its localization in cis-Golgi associated to lactose synthase complex, suggest that both transporters are involved in glucose uptake into this organelle, supporting lactose synthesis.

Modifications of short-term intrinsic pacemaker variability in diet-induced metabolic syndrome: a study on isolated rabbit heart

Abstract

Metabolic syndrome (MetS) describes a condition associated with multiple diseases concomitantly such as diabetes, hypertension, obesity, and dyslipidemia. It has been linked with higher prevalence of cardiovascular disease, atrial fibrillation, and sudden cardiac death. One of the underlying mechanisms could be altered automaticity, which would reflect modifications of sinus node activity. These phenomena can be evaluated analyzing the components of heart rate variability (HRV). Our aim was to examine the modifications of sinus node variability in an isolated heart model of diet-induced obesity and MetS. Male NZW rabbits were randomly assigned to high-fat (HF, n = 8), control (HF-C, n = 7), high-fat, high-sucrose (HFHS, n = 9), and control (HFHS-C, n = 9) groups, fed with their respective diets during 18/28 weeks. After euthanasia, their hearts were isolated in a Langendorff system. We recorded 10–15 min of spontaneous activity. Short RR time series were analyzed, and standard HRV parameters were determined. One-way ANOVA, Kruskal-Wallis test, and bivariate correlation were used for statistical analysis (p < 0.05). We did find an increase in the complexity and irregularity of intrinsic pacemaker activity as shown by modifications of approximate entropy, sample entropy, minimum multiscale entropy, and complexity index in HFHS animals. Even though no differences were found in standard time and frequency-domain analyses, spectral heterogeneity increased in HFHS group. Animal weight and glucose intolerance were highly correlated with the modifications of intrinsic pacemaker variability. Finally, modifications of intrinsic HRV seemed to be reliant on the number of components of MetS present, given that only HFHS group showed significant changes towards an increased complexity and irregularity of intrinsic pacemaker variability.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου