Τρίτη 12 Νοεμβρίου 2019




AI Is Bringing USB Back: Implementing a Beta Chest X-ray Neural Network

Abstract

In a day and age of rapid technological growth and advancement in digital technology, quantum computing, and decentralized cloud computing, it is difficult to get excited about USB sticks, those little dongles that store only a few gigabytes and commonly get lost in the bottom of your bag. Well, they are making a major comeback at our institution in Canada. That is right, when Stanford and MIT are making the next Facebook and autonomous vehicles, we are bringing USB back.


Imager-4D: New Software for Viewing Dynamic PET Scans and Extracting Radiomic Parameters from PET Data

Abstract

Extensive research is currently being conducted into dynamic positron emission tomography (PET) acquisitions (including dynamic whole-body imaging) as well as extraction of radiomic features from imaging modalities. We describe a new PET viewing software known as Imager-4D that provides a facile means of viewing and analyzing dynamic PET data and obtaining associated quantitative metrics including radiomic parameters. The Imager-4D was programmed in the Java language utilizing the FX extensions. It is executable on any system for which a Java w/FX compliant virtual machine is available. The software incorporates the ability to view and analyze dynamic data acquired with different types of dynamic protocols. For image display, the program maintains a built-in library of 62 different lookup tables with monochromatic and full-color distributions. The Imager-4D provides multiple display layouts and can display fused images. Multiple methods of volume-of-interest (VOI) selection are available. Dynamic analysis features, such as image summation and full Patlak analysis, are also available. The user interface includes window width and level, blending, and zoom functionality. VOI sizes are adjustable and data from VOIs can either be displayed numerically or graphically within the software or exported. An example case of a 50-year-old woman with metastatic colorectal cancer and thyroiditis is included and demonstrates the steps for a user to obtain standard PET parameters, dynamic data, and radiomic features using selected VOIs. The Imager-4D represents a novel PET viewer that allows the user to view dynamic PET data, to derive dynamic and radiomic parameters from that data, and to combine dynamic data with radiomics (“dynomics”). The Imager-4D is available as a free download. This software has the potential to speed the adoption of advanced analysis of dynamic PET data into routine clinical use.


Classification of Aortic Dissection and Rupture on Post-contrast CT Images Using a Convolutional Neural Network

Abstract

Aortic dissections and ruptures are life-threatening injuries that must be immediately treated. Our national radiology practice receives dozens of these cases each month, but no automated process is currently available to check for critical pathologies before the images are opened by a radiologist. In this project, we developed a convolutional neural network model trained on aortic dissection and rupture data to assess the likelihood of these pathologies being present in prospective patients. This aortic injury model was used for study prioritization over the course of 4 weeks and model results were compared with clinicians’ reports to determine accuracy metrics. The model obtained a sensitivity and specificity of 87.8% and 96.0% for aortic dissection and 100% and 96.0% for aortic rupture. We observed a median reduction of 395 s in the time between study intake and radiologist review for studies that were prioritized by this model. False-positive and false-negative data were also collected for retraining to provide further improvements in subsequent versions of the model. The methodology described here can be applied to a number of modalities and pathologies moving forward.


High Efficiency Video Coding (HEVC)–Based Surgical Telementoring System Using Shallow Convolutional Neural Network

Abstract

Surgical telementoring systems have gained lots of interest, especially in remote locations. However, bandwidth constraint has been the primary bottleneck for efficient telementoring systems. This study aims to establish an efficient surgical telementoring system, where the qualified surgeon (mentor) provides real-time guidance and technical assistance for surgical procedures to the on-spot physician (surgeon). High Efficiency Video Coding (HEVC/H.265)–based video compression has shown promising results for telementoring applications. However, there is a trade-off between the bandwidth resources required for video transmission and quality of video received by the remote surgeon. In order to efficiently compress and transmit real-time surgical videos, a hybrid lossless-lossy approach is proposed where surgical incision region is coded in high quality whereas the background region is coded in low quality based on distance from the surgical incision region. For surgical incision region extraction, state-of-the-art deep learning (DL) architectures for semantic segmentation can be used. However, the computational complexity of these architectures is high resulting in large training and inference times. For telementoring systems, encoding time is crucial; therefore, very deep architectures are not suitable for surgical incision extraction. In this study, we propose a shallow convolutional neural network (S-CNN)–based segmentation approach that consists of encoder network only for surgical region extraction. The segmentation performance of S-CNN is compared with one of the state-of-the-art image segmentation networks (SegNet), and results demonstrate the effectiveness of the proposed network. The proposed telementoring system is efficient and explicitly considers the physiological nature of the human visual system to encode the video by providing good overall visual impact in the location of surgery. The results of the proposed S-CNN-based segmentation demonstrated a pixel accuracy of 97% and a mean intersection over union accuracy of 79%. Similarly, HEVC experimental results showed that the proposed surgical region–based encoding scheme achieved an average bitrate reduction of 88.8% at high-quality settings in comparison with default full-frame HEVC encoding. The average gain in encoding performance (signal-to-noise) of the proposed algorithm is 11.5 dB in the surgical region. The bitrate saving and visual quality of the proposed optimal bit allocation scheme are compared with the mean shift segmentation–based coding scheme for fair comparison. The results show that the proposed scheme maintains high visual quality in surgical incision region along with achieving good bitrate saving. Based on comparison and results, the proposed encoding algorithm can be considered as an efficient and effective solution for surgical telementoring systems for low-bandwidth networks.


Automated Billing Code Retrieval from MRI Scanner Log Data

Abstract

Although the level of digitalization and automation steadily increases in radiology, billing coding for magnetic resonance imaging (MRI) exams in the radiology department is still based on manual input from the technologist. After the exam completion, the technologist enters the corresponding exam codes that are associated with billing codes in the radiology information system. Moreover, additional billing codes are added or removed, depending on the performed procedure. This workflow is time-consuming and we showed that billing codes reported by the technologists contain errors. The coding workflow can benefit from an automated system, and thus a prediction model for automated assignment of billing codes for MRI exams based on MRI log data is developed in this work. To the best of our knowledge, it is the first attempt to focus on the prediction of billing codes from modality log data. MRI log data provide a variety of information, including the set of executed MR sequences, MR scanner table movements, and given a contrast medium. MR sequence names are standardized using a heuristic approach and incorporated into the features for the prediction. The prediction model is trained on 9754 MRI exams and tested on 1 month of log data (423 MRI exams) from two MRI scanners of the radiology site for the Swiss medical tariffication system Tarmed. The developed model, an ensemble of classifier chains with multilayer perceptron as a base classifier, predicts medical billing codes for MRI exams with a micro-averaged F1-score of 97.8% (recall 98.1%, precision 97.5%). Manual coding reaches a micro-averaged F1-score of 98.1% (recall 97.4%, precision 98.8%). Thus, the performance of automated coding is close to human performance. Integrated into the clinical environment, this work has the potential to free the technologist from a non-value adding an administrative task, therefore enhance the MRI workflow, and prevent coding errors.


Could Blockchain Technology Empower Patients, Improve Education, and Boost Research in Radiology Departments? An Open Question for Future Applications

Abstract

Blockchain can be considered as a digital database of cryptographically validated transactions stored as blocks of data. Copies of the database are distributed on a peer-to-peer network adhering to a consensus protocol for authentication of new blocks into the chain. While confined to financial applications in the past, this technology is quickly becoming a hot topic in healthcare and scientific research. Potential applications in radiology range from upgraded monitoring of training milestones achievement for residents to improved control of clinical imaging data and easier creation of secure shared databases.


Deterministic vs. Probabilistic: Best Practices for Patient Matching Based on a Comparison of Two Implementations

Abstract

In order to successfully share patient data across multiple systems, a reliable method of linking patient records across disparate organizations is required. In Canada, within the province of Ontario, there are four centralized diagnostic imaging repositories (DIRs) that allow multiple hospitals and independent health facilities (IHF) to send diagnostic images and reports for the purpose of sharing patient data across the region (Nagels et al. J Digit Imaging 28: 188, 2015). In 2017, the opportunity to consolidate the two regional DIRs that share the south-central and southeast area of the province was reviewed. The two DIRs use two different methods for patient matching. One uses a deterministic match based on one specific value, while the other uses a probabilistic scorecard that weighs a variety of patient demographics to assess if the patients are a match. An analysis was conducted to measure how a patient identity domain that uses a deterministic approach would compare to the accepted “standard.” The intention is to review the analysis as a means of identifying interesting insights in both approaches. For the purpose of this paper, the two DIRs will be referred to as DIR1 and DIR2.


A Marker-Less Registration Approach for Mixed Reality–Aided Maxillofacial Surgery: a Pilot Evaluation

Abstract

As of common routine in tumor resections, surgeons rely on local examinations of the removed tissues and on the swiftly made microscopy findings of the pathologist, which are based on intraoperatively taken tissue probes. This approach may imply an extended duration of the operation, increased effort for the medical staff, and longer occupancy of the operating room (OR). Mixed reality technologies, and particularly augmented reality, have already been applied in surgical scenarios with positive initial outcomes. Nonetheless, these methods have used manual or marker-based registration. In this work, we design an application for a marker-less registration of PET-CT information for a patient. The algorithm combines facial landmarks extracted from an RGB video stream, and the so-called Spatial-Mapping API provided by the HMD Microsoft HoloLens. The accuracy of the system is compared with a marker-based approach, and the opinions of field specialists have been collected during a demonstration. A survey based on the standard ISO-9241/110 has been designed for this purpose. The measurements show an average positioning error along the three axes of (xyz) = (3.3 ± 2.3, − 4.5 ± 2.9, − 9.3 ± 6.1) mm. Compared with the marker-based approach, this shows an increment of the positioning error of approx. 3 mm along two dimensions (xy), which might be due to the absence of explicit markers. The application has been positively evaluated by the specialists; they have shown interest in continued further work and contributed to the development process with constructive criticism.


Computer-Aided Diagnosis (CAD) of Pulmonary Nodule of Thoracic CT Image Using Transfer Learning

Abstract

Computer-aided diagnosis (CAD) has already been widely used in medical image processing. We recently make another trial to implement convolutional neural network (CNN) on the classification of pulmonary nodules of thoracic CT images. The biggest challenge in medical image classification with the help of CNN is the difficulty of acquiring enough samples, and overfitting is a common problem when there are not enough images for training. Transfer learning has been verified as reasonable in dealing with such problems with an acceptable loss value. We use the classic LeNet-5 model to classify pulmonary nodules of thoracic CT images, including benign and malignant pulmonary nodules, and different malignancies of the malignant nodules. The CT images are obtained from Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) where both pulmonary nodule scanning and nodule annotations are available. These images are labeled and stored in a medical images knowledge base (KB), which is designed and implemented in our previous work. We implement the 10-folder cross validation (CV) to testify the robustness of the classification model we trained. The result demonstrates that the transfer learning of the LeNet-5 is good for classifying pulmonary nodules of thoracic CT images, and the average values of Top-1 accuracy are 97.041% and 96.685% respectively. We believe that our work is beneficial and has potential for practical diagnosis of lung nodules.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου