Carbon catabolite repression: not only for glucoseAbstract
Most organisms prefer to utilize glucose as a carbon source. Accordingly, the expression of genes involved in the catabolism of other carbon sources is repressed by the presence of glucose in a process known as (carbon) catabolite repression. However, much less is known about the relationships between “poor” carbon sources. We have recently shown that the enzyme alcohol dehydrogenase of the yeast Saccharomyces cerevisiae (ADH2), required for the utilization of ethanol, is not only inhibited by glucose, but by the acetate imported from the medium or produced by ethanol metabolism. Our study showed that sensing of acetate takes place within the cell, and not in the external medium, and that “poor” carbon sources are also utilized according to a pre-established hierarchy.
|
Genome-wide identification of genes encoding putative secreted E3 ubiquitin ligases and functional characterization of PbRING1 in the biotrophic protist Plasmodiophora brassicaeAbstract
The E3 ubiquitin ligases are key regulators of protein ubiquitination, which have been shown to be involved in a variety of cellular responses to both biotic and abiotic stresses in eukaryotes. However, the E3 ubiquitin ligase homologues in the soil-borne plant pathogen Plasmodiophora brassicae, the causal agent of clubroot disease of crucifer crops worldwide, remain largely unknown. In this study, we characterized secreted E3 ubiquitin ligases, a group of proteins known to be involved in virulence in many pathogens, in a plasmodiophorid P. brassicae. Genome-wide search in the P. brassicae genome retrieved 139 putative E3 ubiquitin ligases, comprising of 115 RING, 15 HECT, 1 HECT-like, and 8 U-box E3 ubiquitin ligases. Among these E3 ubiquitin ligases, 11 RING, 1 U-box, and 3 HECT were found to harbor signal peptide. Based on published RNA-seq data (Schwelm et al. in Sci Rep 5:11153, 2015), we found that these genes were differentially expressed in distinct life stages including germinating spores, maturing spores, and plasmodia. We characterized one potential secreted E3 ubiquitin ligase, PbRING1 (PBRA_000499). Yeast invertase assay showed that PbRING1 harbors a functional N-terminal signal peptide. PbRING1 also harbors a really interested new gene (RING) domain at its C terminus, which was found to display the E3 ligase activity in vitro. Collectively, this study provides a comprehensive insight into the reservoir of putative secreted E3 ligases in P. brassicae.
|
RNA insertion in DNA as the imprint moiety: the fission yeast paradigmAbstract
This review elaborates on the findings of a new report which possibly resolves the biochemical nature of a novel type of DNA imprint as ribonucleotide and the mechanism of its formation during cell differentiation in fission yeast. The process of mating-type switching in fission yeast, Schizosaccharomyces pombe, displays characteristics of a typical mammalian stem cell lineage, wherein a cell divides to produce an identical cell and a differentiated cell after every two cell divisions. This developmental asymmetry has been ascribed to play a role in generation of a DNA strand-specific imprint at the mat1 locus during lagging strand synthesis and its segregation to one of the two daughter cells by the process of asymmetric, semi-conservative DNA replication. The nature of this imprint and mechanisms of its generation have been a subject of research and debate. A recent report by Singh et al. (Nucleic Acids Res 47:3422–3433. https://doi.org/10.1093/nar/gkz092, 2019) provides compelling evidence in support of a ribonucleotide as the imprint moiety within the mat1 DNA and demonstrates the role of Mcm10/Cdc23, an important, evolutionarily conserved component of DNA replication machinery in eukaryotes, in installing the imprint through a non-canonical primase activity and interaction with DNA Polα and Swi1. The high degree of conservation of DNA replication machinery, especially the presence of the T7 gene 4 helicase/primase domain in the mammalian orthologs of Mcm10 suggests that similar mechanisms of DNA imprinting may play a role during cell differentiation in metazoans.
|
The potential of respiration inhibition as a new approach to combat human fungal pathogensAbstract
The respiratory chain has been proposed as an attractive target for the development of new therapies to tackle human fungal pathogens. This arises from the presence of fungal-specific electron transport chain components and links between respiration and the control of virulence traits in several pathogenic species. However, as the physiological roles of mitochondria remain largely undetermined with respect to pathogenesis, its value as a potential new drug target remains to be determined. The use of respiration inhibitors as fungicides is well developed but has been hampered by the emergence of rapid resistance to current inhibitors. In addition, recent data suggest that adaptation of the human fungal pathogen, Candida albicans, to respiration inhibitors can enhance virulence traits such as yeast-to-hypha transition and cell wall organisation. We conclude that although respiration holds promise as a target for the development of new therapies to treat human fungal infections, we require a more detailed understanding of the role that mitochondria play in stress adaption and virulence.
|
Unravelling nuclear size controlAbstract
Correlation between nuclear and cell size, the nucleocytoplasmic ratio, is a cellular phenomenon that has been reported throughout eukaryotes for more than a century but the mechanisms that achieve it are not well understood. Here, we review work that has shed light on the cellular processes involved in nuclear size control. These studies have implicated nucleocytoplasmic transport, LINC complexes, RNA processing, regulation of nuclear envelope expansion and partitioning of importin α in nuclear size control, moving us closer to a mechanistic understanding of this phenomenon.
|
An evolving view of copy number variantsAbstract
Copy number variants (CNVs) are regions of the genome that vary in integer copy number. CNVs, which comprise both amplifications and deletions of DNA sequence, have been identified across all domains of life, from bacteria and archaea to plants and animals. CNVs are an important source of genetic diversity, and can drive rapid adaptive evolution and progression of heritable and somatic human diseases, such as cancer. However, despite their evolutionary importance and clinical relevance, CNVs remain understudied compared to single-nucleotide variants (SNVs). This is a consequence of the inherent difficulties in detecting CNVs at low-to-intermediate frequencies in heterogeneous populations of cells. Here, we discuss molecular methods used to detect CNVs, the limitations associated with using these techniques, and the application of new and emerging technologies that present solutions to these challenges. The goal of this short review and perspective is to highlight aspects of CNV biology that are understudied and define avenues for further research that address specific gaps in our knowledge of these complex alleles. We describe our recently developed method for CNV detection in which a fluorescent gene functions as a single-cell CNV reporter and present key findings from our evolution experiments in Saccharomyces cerevisiae. Using a CNV reporter, we found that CNVs are generated at a high rate and undergo selection with predictable dynamics across independently evolving replicate populations. Many CNVs appear to be generated through DNA replication-based processes that are mediated by the presence of short, interrupted, inverted-repeat sequences. Our results have important implications for the role of CNVs in evolutionary processes and the molecular mechanisms that underlie CNV formation. We discuss the possible extension of our method to other applications, including tracking the dynamics of CNVs in models of human tumors.
|
FgPEX1 and FgPEX10 are required for the maintenance of Woronin bodies and full virulence of Fusarium graminearumAbstract
Peroxisomes are ubiquitous single-membrane-bound organelles that perform a variety of biochemical functions in eukaryotic cells. Proteins involved in peroxisomal biogenesis are collectively called peroxins. Currently, functions of most peroxins in phytopathogenic fungi are poorly understood. Here, we report identification of PEX1 and PEX10 in the phytopathogenic fungus, Fusarium graminearum, namely FgPEX1 and FgPEX10, the orthologs of yeast ScPEX1 and ScPEX10. To functionally characterize FgPEX1 and FgPEX10, we constructed deletion mutants of FgPEX1 and FgPEX10 (ΔPEX1 and ΔPEX10) by targeting gene-replacement strategies. Our data demonstrate that both mutants displayed reduced mycelial growth, conidiation, and production of perithecia. Deletion of FgPEX1 and FgPEX10 resulted in a shortage of acetyl-CoA, which is an important reason for the reduced deoxynivalenol production and inhibited virulence of F. graminearum. Moreover, ΔPEX1 and ΔPEX10 showed an increased accumulation of lipid droplets and endogenous reactive oxygen species. In addition, FgPEX1 and FgPEX10 were found to be involved in the maintenance of cell wall integrity and Woronin bodies.
|
A conserved role for transcription factor sumoylation in binding-site selectionAbstract
Large numbers of eukaryotic transcription factors (TFs) are modified by SUMO post-translational modifications. Whereas the effect of TF sumoylation on the expression of target genes is largely context-dependent, it is not known whether the modification has a common function in regulating TFs throughout eukaryotic species. Here, I highlight four studies that used genome-wide chromatin-immunoprecipitation analysis (ChIP-seq) to examine whether sumoylation affects the selection of sites on the genome that are bound by human and yeast TFs. The studies found that impairing sumoylation led to deregulated binding-site selection for all four of the examined TFs. Predominantly, compared to wild-type forms, the sumoylation-deficient forms of the TFs bound to numerous additional non-specific sites, pointing to a common role for the modification in restricting TF binding to appropriate sites. Evidence from these studies suggests that TF sumoylation influences binding-site selection by modulating protein–protein interactions with other DNA-binding TFs, or by promoting conformational changes in the TFs that alter their DNA-binding specificity or affinity. I propose a model in which, prior to their sumoylation, TFs initially bind to chromatin with reduced specificity, which leads to spurious binding but also ensures that all functional sites become bound. Once the TFs are bound to DNA, sumoylation then acts to increase specificity and promotes release of the TFs from non-specific sites. The similar observations from these four genome-wide studies across divergent species suggest that binding-site selection is a general and conserved function for TF sumoylation.
|
Protein kinases in mitotic phosphorylation of budding yeast CENP-AAbstract
Centromere identity is specified epigenetically by specialized nucleosomes containing the evolutionarily conserved centromeric histone H3 variant (Cse4 in budding yeast, CENP-A in humans) which is essential for faithful chromosome segregation. However, the mechanisms of epigenetic regulation of Cse4 have not been clearly defined. We have identified two kinases, Cdc5 (Plk1 in humans) and Ipl1 (Aurora B kinase in humans) that phosphorylate Cse4 to prevent chromosomal instability (CIN). Cdc5 associates with Cse4 in mitosis and Cdc5-mediated phosphorylation of Cse4 is coincident with the centromeric enrichment of Cdc5 during metaphase. Defects in Cdc5-mediated Cse4 phosphorylation causes CIN, whereas constitutive association of Cdc5 with Cse4 results in lethality. Cse4 is also a substrate for Ipl1 and phospho-mimetic cse4 mutants suppress growth defects of ipl1 and Ipl1 kinetochore substrate mutants, namely dam1 spc34 and ndc80. Ipl1-mediated phosphorylation of Cse4 regulates kinetochore–microtubule interactions and chromosome biorientation. We propose that collaboration of Cdc5- and Ipl1-mediated phosphorylation of Cse4 modulates kinetochore structure and function, and chromosome biorientation. These findings demonstrate how phosphorylation of Cse4 regulates the integrity of the kinetochore, and acts as an epigenetic marker for mitotic control.
|
DksA and DNA double-strand break repairAbstract
We use genetic assays to suggest that transcription-coupled repair or new origin formation in Escherichia coli involves removal of RNAP to create an RNA primer for DNA synthesis. Transcription factor DksA was shown to play a role in numerous reactions involving RNA polymerase. Some, but not all, of the activities of DksA at promoters or during transcription elongation require (p)ppGpp. In addition to its role during transcription, DksA is also involved in maintaining genome integrity. Cells lacking DksA are sensitive to multiple DNA damaging agents including UV light, ionizing radiation, mitomycin C, and nalidixic acid. Here, we focus on two recent studies addressing the importance of DksA in the repair of double-strand breaks (DSBs), one by Sivaramakrishnan et al. (Nature 550:214–218, 2017) and one originating in our laboratory, Myka et al. (Mol Microbiol 111:1382–1397. https://doi.org/10.1111/mmi.14227, 2019). It appears that depending on the type and possibly location of DNA damage, DksA can play either a passive or an active role in DSB repair. The passive role relies on exclusion of anti-backtracking factors from the RNAP secondary channel. The exact mechanism of active DksA-mediated DNA repair is unknown. However, DksA was proposed to destabilize transcription complexes, thus clearing the way for recombination and DNA repair. Based on the requirement for DksA, both in repair of DSBs and the R-loop-dependent formation of new origins of DNA replication, we propose that DksA may allow for removal of RNAP without unwinding of the RNA:DNA hybrid, which can then be extended by a DNA polymerase. This mechanism obviates the need for RNAP backtracking to repair damaged DNA.
|
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Πληροφορίες
Ετικέτες
Κυριακή 3 Νοεμβρίου 2019
Αναρτήθηκε από
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
στις
11:58 μ.μ.
Ετικέτες
00302841026182,
00306932607174,
alsfakia@gmail.com,
Anapafseos 5 Agios Nikolaos 72100 Crete Greece,
Medicine by Alexandros G. Sfakianakis,
Telephone consultation 11855 int 1193
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Αρχειοθήκη ιστολογίου
-
►
2023
(276)
- ► Φεβρουαρίου (133)
- ► Ιανουαρίου (143)
-
►
2022
(1976)
- ► Δεκεμβρίου (116)
- ► Σεπτεμβρίου (158)
- ► Φεβρουαρίου (165)
- ► Ιανουαρίου (161)
-
►
2021
(3661)
- ► Δεκεμβρίου (161)
- ► Σεπτεμβρίου (274)
- ► Φεβρουαρίου (64)
- ► Ιανουαρίου (368)
-
►
2020
(4554)
- ► Δεκεμβρίου (400)
- ► Σεπτεμβρίου (381)
- ► Φεβρουαρίου (638)
- ► Ιανουαρίου (691)
-
▼
2019
(4999)
- ► Δεκεμβρίου (924)
-
▼
Νοεμβρίου
(806)
- Ξηρή Μύτη
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- We thank You, God, for the food we eat; We thank y...
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- International Journal of Molecular Sciences,
- International Journal of Environmental Resear...
- Antioxidants, Vol. 8, Pages 589: Synthesis...
- Melanocytic aggregates with unique morphology as...
- Fatal obstructive asphyxia: Trans-pulmonary dens...
- Geochronology of the southern Baltic Sea sedimen...
- Intraoperative Multipoint Acupuncture for Reduci...
- Enhanced expression of NLRP3 inflammasome compon...
- Mechanical and geometric properties of thermof...
- The Physician's Guide to Platelet-Rich Plasma in...
- Direct-acting Antivirals for the Treatment of Ki...
- Thyroid functions and levels of some trace eleme...
- In vivo and in vitro diagnosis of cracked teeth:...
- Association of colorectal surgeons of India: Pas...
- Fatal cases of animal-mediated human rabies: Loo...
- Strategy for Securing Key Patents in the Field o...
- Identification of passion fruit ( Passiflora edu...
- Journal of Real-Time Image Processing: sixth iss...
- The transient expression of CHIKV VLP in large s...
- Self-Compassion and Suicide Risk in Veterans: Whe...
- Nanoglomus plukenetiae , a new fungus from Peru,...
- Thinking (about) groups: a special issue of Synt...
- Athamanika or Tzoumerka is a mountain range in nor...
- American Journal of Roentgenology, Women's Imag...
- R-dihydroetorphine Analgesia and Respiratory Depre...
- Obstructive sleep apnea and cardiovascular dis...
- Ionic Liquid Forms of Carvedilol: Preparation, C...
- Mitochondrial tRNA Ser(UCN) 7471delC may be a no...
- Associations of Intraoperative Radial Arterial S...
- Cannabis Use Disorder and Perioperative Outcomes...
- Computed tomography diagnosis of transomental h...
- Spheno-orbital meningiomas, Letter of response t...
- Arteriovenous malformation associated with a HRA...
- Diversity of igneous rocks from the Isachsen Dom...
- Racial/ethnic and socioeconomic survival dispari...
- Harlekinsyndrom nach Skoliosechirurgie Zusammenf...
- Dental characteristics and according treatments...
- Editorial water history issue 3/4 2019 Technical...
- Experimentally Derived Sedimentary, Molecular, a...
- Comparison of Voice Quality of Life in Early Sta...
- Fibrinogen Concentrate vs Cryoprecipitate For...
- Poly(ADP‐ribose) polymerase‐1 depletion enhances...
- Chronic venous insufficiency: A review for nurs...
- Selective Dorsal Rhizotomy for the Treatment of ...
- Analysis of the Visual Perception of Female Brea...
- Improving Provider Compliance With Adult Inflamm...
- A Systematic Review of the Treatment of Superfic...
- Cannabinoids and inflammation: implications for ...
- Mass Casualties and Case ManagementThe mass casu...
- Relationships between organizational and individu...
- Enhanced Recovery After Surgery: Concepts and Ap...
- Neuraxial Block for Delivery Among Women With Lo...
- Ensuring Quality: Are We Doing Enough to Protect...
- Physical Activity and Pain in Youth With Sickle ...
- Patient Safety Culture, Health Information Techn...
- Taming Tinnitus: Addressing Mental Distress a Ke...
- Healthcare’s Present and Future: Consumer Center...
- Management of choledocholithiasis in a 5-month-o...
- Grey areas and evidence gaps in the management o...
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Living Arrangement and Economic Dependency among...
- Premalignant male genital dermatosesRochit Rajes...
- Effectiveness of a Pulmonary Rehabilitation ...
- Alcohol-mediated behaviours and the gut-brai...
- Comparison of the structural dynamic and mit...
- ScienceDirect Publication: International Immu...
- The Effects of Different Exercise Trainings ...
- Study tracks genomic changes that reinforce ...
- Laryngo-Rhino-Otologie,
- Update on Facial Skin Rejuvenation Technology
- Latest Results for Psychopharmacology
- International Journal of Environmental Resear...
- Psychological impact of working in paediatric i...
- Closure of the retroperitoneal space in laparosc...
- Nonpowder Firearm Injuries to Children Treate...
- Association between Smoking and 30-Day Outcomes...
- Implementation Strategies for Cardiovascular ...
- Otoscopic Clinic, Cavernous Hemangioma of the E...
- Ten Commandments of Safe and Optimum Neck Dissec...
- Emerging antimicrobial resistance and newer tool...
- Facial Skin Rejuvenation Technology,FACIAL PLAST...
- Conventional X-ray as an additional tool in the ...
- High heavy metal load does not inhibit nitrogen ...
- detection of Cryptosporidium and Giardia in the ...
- ► Σεπτεμβρίου (845)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου