Σάββατο 9 Νοεμβρίου 2019

Nasolacrimal stent with shape memory as an advanced alternative to silicone products
Publication date: Available online 7 November 2019
Source: Acta Biomaterialia
Author(s): Ju Young Park, Jung Bok Lee, Woo Beom Shin, Mi-Lan Kang, Yong Cheol Shin, Deok Hyeon Son, Se Won Yi, Jeong-Kee Yoon, Ji Young Kim, Jae Sang Ko, Chang-Soo Kim, Jin Sook Yoon, Hak-Joon Sung
Abstract
Epiphora is the overflow of tears typically caused by obstruction or occlusion of the nasolacrimal duct. More attention is required to address this global health issue owing to the increase in air pollution. Implantation of a silicone stent is the preferred treatment for epiphora; however, introducing a silicone stent into a narrow duct with complex geometry is challenging as it requires guidance by a sharp metal needle. Additionally, silicone can cause adverse reactions such as biofilm formation and tear flow resistance due to its extreme hydrophobicity. To overcome these problems, in this study we developed a new type of biocompatible shape memory polymer (SMP) stent with elasticity capacity for self-expansion. First, SMPs in the form of x%poly(ε-caprolactone)-co-y%poly(glycidyl methacrylate) (x%PCL-y%PGMA) were synthesized via ring opening polymerization by varying the molar ratio of PCL(x%) and PGMA(y%). Second, the shape memory and mechanical properties were tuned by controlling the crosslinking degree and concentration of x%PCL-y%PGMA solution to produce a test type of SMP stent. Lastly, this (94%PCL-06%PGMA) stent exhibited more standout critical functions in a series of in vitro and in vivo experiments such as a cell growth-supporting level of biocompatibility with nasal epithelial cells without significant inflammatory responses, better resistance to biofilm formation, and more efficient capacity to drain tear than the silicone control. Overall, 94%PCL-06%PGMA can be suggested as a superior alternative to the currently used materials for nasolacrimal stents.
Statement of significance
Silicone intubation (stenting) has been widely used to treat nasolacrimal duct obstruction, however, it can cause adverse clinical effects such as bacterial infection; presents procedural challenges because of the curved nasolacrimal duct structure; and shows poor drainage efficiency stemming from the highly hydrophobic nature of silicone. In this work, we describe an innovative shape memory polymer (SMP) as a superior alternative to conventional silicone-based materials for nasolacrimal duct intubation. We demonstrate the clear advantages of the SMP over conventional silicone, including a much higher drainage capacity and superior resistance to bacterial infection.
Graphical abstract

Image, graphical abstract

Deconstructing tissue engineered trachea: assessing the role of synthetic scaffolds, segmental replacement and cell seeding on graft performance
Publication date: Available online 7 November 2019
Source: Acta Biomaterialia
Author(s): Sayali Dharmadhikari, Lumei Liu, Kimberly Shontz, Matthew Wiet, Audrey White, Andrew Goins, Himani Akula, Jed Johnson, Susan D. Reynolds, Christopher K. Breuer, Tendy Chiang
Abstract
The ideal construct for tracheal replacement remains elusive in the management of long segment airway defects. Tissue engineered tracheal grafts (TETG) have been limited by the development of graft stenosis or collapse, infection, or lack of an epithelial lining. We applied a mouse model of orthotopic airway surgery to assess the impact of three critical barriers encountered in clinical applications: the scaffold, the extent of intervention, and the impact of cell seeding and characterized their impact on graft performance. First, synthetic tracheal scaffolds electrospun from polyethylene terephthalate / polyurethane (PET/PU) were orthotopically implanted in anterior tracheal defects of C57BL/6 mice. Scaffolds demonstrated complete coverage with ciliated respiratory epithelium by 2 weeks. Epithelial migration was accompanied by macrophage infiltration which persisted at long term (>6 weeks) time points. We then assessed the impact of segmental tracheal implantation using syngeneic trachea as a surrogate for the ideal tracheal replacement. Graft recovery involved local upregulation of epithelial progenitor populations and there was no evidence of graft stenosis or necrosis. Implantation of electrospun synthetic tracheal scaffold for segmental replacement resulted in respiratory distress and required euthanasia at an early time point. There was limited epithelial coverage of the scaffold with and without seeded bone marrow-derived mononuclear cells (BM-MNCs). We conclude that synthetic scaffolds support re-epithelialization in orthotopic patch implantation, syngeneic graft integration occurs with focal repair mechanisms, however epithelialization in segmental synthetic scaffolds is limited and is not influenced by cell seeding.
Graphical abstract

Image, graphical abstract

Ocular surface repair using decellularized porcine conjunctiva
Publication date: Available online 6 November 2019
Source: Acta Biomaterialia
Author(s): Long Zhao, Yanni Jia, Can Zhao, Hua Li, Fuyan Wang, Muchen Dong, Ting Liu, Songmei Zhang, Qingjun Zhou, Weiyun Shi
Abstract
The primary functions of the conjunctiva embody ocular surface protection and the maintenance of the tear film equilibrium. Severe conjunctival defects such as symblepharon may impair the integrity of ocular surface and cause loss of visual functions. Here we report the use of a decellularized porcine conjunctiva (DPC) for conjunctival reconstruction in rabbit models and in clinic. Our results show that the major xenoantigens are efficiently removed, while abundant matrix components and integrated microstructures are well preserved in the DPC. These characteristics provide mechanical support and favorable histocompatibility for repairing damaged conjunctiva. The DPC application has demonstrated enhanced transplant stability and improved epithelial regeneration in severe ocular surface damage comparing to those of amniotic membrane (AM), the most frequently applied matrix for ocular surface reconstruction nowadays. In order to test the DPC performance in clinic, three patients with pterygium and one patient with symblepharon underwent transplant with DPC. The grafts in all cases were completely re-epithelized and no graft melt or fibroplasia were observed. These results suggest that the strategy we developed is feasible and effective for conjunctival reconstruction and ocular surface repair.
Statement of significance
In this study, we adopted an innovative approach to prepare decellularized porcine conjunctiva (DPC). The intricate conjunctiva-specific structures and abundant matrix components were preserved in DPC, which offers favorable mechanical properties for graft. DPC has shown positive effects in ocular surface repair, which has been proven particularly in a rabbit model with severe symblepharon. Reconstructed conjunctiva by DPC exhibited epithelial heterogeneity, extremely resembling that of native conjunctiva. In addition, results from clinical studies were encouraging for pterygium and symblepharon and clinical application of DPC is promising.
Graphical abstract

Image, graphical abstract

Nanoparticles for Multimodal Antivascular Therapeutics: Dual Drug Release, Photothermal and Photodynamic Therapy.
Publication date: Available online 6 November 2019
Source: Acta Biomaterialia
Author(s): Juan L. Paris, Gonzalo Villaverde, Sergio Gómez-Graña, María Vallet-Regí
Abstract
The poor delivery of nanoparticles to target cancer cells hinders their success in the clinical setting. In this work, an alternative target readily available for circulating nanoparticles has been selected to eliminate the need for nanoparticle penetration in the tissue: the tumor blood vessels. A tumor endothelium-targeted nanoparticle (employing an RGD-containing peptide) capable of co-delivering two anti-vascular drugs (one anti-angiogenic drug and one vascular disruption agent) is here presented. Furthermore, the nanodevice presents two additional anti-vascular capabilities upon activation by Near-Infrared light: provoking local hyperthermia (by gold nanorods in the system) and generating toxic reactive oxygen species (by the presence of a photosensitizer). RGD-targeting is shown to increase uptake by HUVEC cells, and while the nanoparticles are shown not to be toxic for these cells, upon Near-Infrared irradiation their almost complete killing is achieved. The combination of all four therapeutic modalities is then evaluated in an ex ovo fibrosarcoma xenograft model, which shows a significant reduction in the number of blood vessels irrigating the xenografts when the nanoparticles are present, as well as the destruction of the existing blood vessels upon irradiation. These results suggest that the combination of different anti-vascular therapeutic strategies in a single nanocarrier appears promising and should be further explored in the future.
Graphical abstract

Image, graphical abstract

Multi-responsive albumin-lonidamine conjugated hybridized gold nanoparticle as a combined photothermal-chemotherapy for synergistic tumor ablation
Publication date: Available online 6 November 2019
Source: Acta Biomaterialia
Author(s): Hima Bindu Ruttala, Thiruganesh Ramasamy, Bijay Kumar Poudel, Raghu Ram Teja Ruttala, Sung Giu Jin, Han-Gon Choi, Sae-Kwang Ku, Chul Soon Yong, Jong Oh Kim
Abstract
Herein, we developed a multifunctional nanoplatform based on the nanoassembly of gold nanoparticles (GNP) conjugated with lonidamine (LND) and aptamer AS1411 (AS-LAGN) as an effective cancer treatment. Conjugating AS1411 aptamer on the surface of the nanoparticle significantly improved particle accumulation in cancer cells via specific affinity toward the nucleolin receptors. In vitro study clearly revealed that laser irradiation-based hyperthermia effect enhanced the chemotherapeutic effects of LND. Combinational treatment modalities revealed significant apoptosis with higher cell killing effect due to increased ROS production and inhibition of cell migration. GNP's ability to convert the excited state photon energy into thermal heat enabled synergistic photothermal/chemotherapy with improved therapeutic efficacy in animal models. Moreover, immunohistochemistry staining assays confirmed the ability of AS-LAGN to induce cellular apoptosis/necrosis and ablation in tumor tissues, without causing evident damages to the surrounding healthy tissues. Altogether, this AS-LAGN nanoplatform could be a promising strategy for mitochondria-based cancer treatment.
Graphical abstract

Image, graphical abstract

Application of molecularly imprinted polymers as artificial receptors for imaging
Publication date: Available online 6 November 2019
Source: Acta Biomaterialia
Author(s): Tereza Vaneckova, Jaroslava Bezdekova, Gang Han, Vojtech Adam, Marketa Vaculovicova
Abstract
Medical diagnostics aims at specific localization of molecular targets as well as detection of abnormalities associated with numerous diseases. Molecularly imprinted polymers (MIPs) represent an approach of creating a synthetic material exhibiting selective recognition properties toward the desired template. The fabricated target-specific MIPs are usually well reproducible, economically efficient, and stable under critical conditions as compared to routinely used biorecognition elements such as fluorescent proteins, antibodies, enzymes, or aptamers and can even be created to those targets for which no antibodies are available. In this review, we summarize the methods of polymer fabrication. Further, we provide key for selection of the core material with imaging function depending on the imaging modality used. Finally, MIP-based imaging applications are highlighted and presented in a comprehensive form from different aspects.
Graphical abstract
Synthetic materials with selective recognition properties toward templates are an alternative to traditionally used recognition biomolecules (e.g., antibodies). Key applications of molecularly imprinted polymers in imaging are highlighted and discussed with regard to the selection of the core material for imaging as well as commonly used imaging targets.
Image, graphical abstract

Peptide science: a ”rule model” for new generations of peptidomimetics
Publication date: Available online 5 November 2019
Source: Acta Biomaterialia
Author(s): Hannah R. Reese, Calvin C. Shanahan, Caroline Proulx, Stefano Menegatti
Abstract
Peptides have been heavily investigated for their biocompatible and bioactive properties. Though a wide array of functionalities can be introduced by varying the amino acid sequence or by structural constraints, properties such as proteolytic stability, catalytic activity, and phase behavior in solution are difficult or impossible to impart upon naturally occurring α-L-peptides. To this end, sequence-controlled peptidomimetics exhibit new folds, morphologies, and chemical modifications that create new structures and functions. The study of these new classes of polymers, especially α-peptoids, has been highly influenced by the analysis, computational, and design techniques developed for peptides. This review examines techniques to determine primary, secondary, and tertiary structure of peptides, and how they have been adapted to investigate peptoid structure. Computational models developed for peptides have been modified to predict the morphologies of peptoids and have increased in accuracy in recent years. The combination of in vitro and in silico techniques have led to secondary and tertiary structure design principles that mirror those for peptides. We then examine several important developments in peptoid applications inspired by peptides such as pharmaceuticals, catalysis, and protein-binding. A brief survey of alternative backbone structures and research investigating these peptidomimetics shows how the advancement of peptide and peptoid science has influenced the growth of numerous fields of study. As peptide, peptoid, and other peptidomimetic studies continue to advance, we will expect to see higher throughput structural analyses, greater computational accuracy and functionality, and wider application space that can improve human health, solve environmental challenges, and meet industrial needs.
Graphical abstract

Graphical abstract for this article

A method to visually observe the degradation-diffusion-reconstruction behavior of hydroxyapatite in the bone repair process
Publication date: Available online 2 November 2019
Source: Acta Biomaterialia
Author(s): Xiaoyuan Li, Baojin Ma, Jianhua Li, Lingling Shang, Hong Liu, Shaohua Ge
ABSTRACT
Nanostructured hydroxyapatite (HAp) has been applied widely as a scaffold material for bone tissue engineering for its good osteoinduction and biodegradability. However, the degradation process and the distribution of degraded HAp within the bone-defect cavity is still not clear. To visually study the behavior of HAp in bone repair process, a membrane of HAp/terbium (Tb)-HAp nanowires (NWs) was prepared with a concentric circle structure (CCS), of which the inner circle and the outer ring were constructed with Tb-HAp and HAp NWs, respectively. HAp/Tb-HAp CCS membrane possessed good osteogenic capacity and efficient fluorescence in the center for visualization. The in vitro experimental results proved that the Tb-HAp and HAp NWs membranes both presented high cytocompatibility and adequate efficiency to induce osteogenic differentiation of bone marrow stem cells (BMSCs). HAp/Tb-HAp CCS membranes were then implanted into a rat calvarial bone-defect model to study the behavior of HAp in bone repair process in vivo by tracking the fluorescence distribution. The results showed that the fluorescence of Tb-HAp diffused gradually from the inner circle to the outer ring, which suggested that the HAp was first degraded, and then the degraded product was diffused and finally reconstructed. Further, the histological results proved that the doping of Tb did not impair the promotive effect of HAp on bone repair process. Therefore, this study provided a visual method to observe the degradation-diffusion-reconstruction behavior of HAp nanomaterials in bone repair process.
Graphical Abstract

Image, graphical abstract

Porous Chitosan Adhesives with L-DOPA for Enhanced Photochemical Tissue Bonding
Publication date: Available online 2 November 2019
Source: Acta Biomaterialia
Author(s): Herleen Ruprai, Anu Shanu, Damia Mawad, James M. Hook, Kristopher Kilian, Laurel George, Richard Wuhrer, Jessica Houang, Simon Myers, Antonio Lauto
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) is a naturally occurring catechol that is known to increase the adhesive strength of various materials used for tissue repair. With the aim of fortifying a porous and erodible chitosan-based adhesive film, L-DOPA was incorporated in its fabrication for stronger photochemical tissue bonding (PTB), a repair technique that uses light and a photosensitiser to promote tissue adhesion. The results showed that L-DOPA did indeed increase the tissue bonding strength of the films when photoactivated by a green LED, with a maximum strength recorded of approximately 30 kPa, 1.4 times higher than in its absence. The addition of L-DOPA also did not appreciably change the swelling, mechanical and erodible properties of the film. This study showed that strong, porous and erodible adhesive films for PTB made from biocompatible materials can be obtained through a simple inclusion of a natural additive such as L-DOPA, which was simply mixed with chitosan without any chemical modifications. In vitro studies using human fibroblasts showed no negative effect on cell proliferation indicating that these films are biocompatible. The films are convenient for various surgical applications as they can provide strong tissue support and a microporous environment for cellular infusion without the use of sutures.
Graphical Abstract

Image, graphical abstract

Integration of biochemical and topographic cues for the formation and spatial distribution of invadosomes in nasopharyngeal epithelial cells
Publication date: Available online 2 November 2019
Source: Acta Biomaterialia
Author(s): C.M. Tsang, Z.Y. Liu, W. Zhang, C. You, G.E. Jones, S.W. Tsao, S.W. Pang
Abstract
Invadosomes are invasive protrusions generated by cells which can secrete matrix metalloproteinases for focal digestion of extracellular matrix. They also aid invasive cancer cells in their transmigration through vascular endothelium. However, how the physical and chemical cues in a three-dimensional (3D) system signal the spatial localization of invadosomes remains largely unknown. Here we study the topographic guidance of invadosome formation in invasive nasopharyngeal cells under the stimulation of an inflammatory cytokine, TGF-β1, using engineered gratings with different width and depth. We first report that TGF-β1 can act as an external signal to upregulate the formation of invadosomes with a random distribution on a plane 2D surface. When the cells were seeded on parallel 3D gratings of 5 μm width and 1 μm depth, most of the invadosomes aligned to the edges of the gratings, indicating a topographic cue to the control of invadosome localization. While the number of invadosomes per cell were not upregulated when the cells were seeded on 3D topography, guidance of invadosomes localization to edges is correlated with cell migration directionality on 1 µm deep gratings. Invadosomes preferentially form at edges when the cells move at a lower speed and are guided along narrow gratings. The invadosomes forming at 3D edges also have a longer half-life than those forming on a plane surface. These data suggest that there are integrated biochemical and 3D geometric cues underlying the spatial regulation of invasive structures so as to elicit efficient invasion or metastasis of cells.
Graphical abstract

Image, graphical abstract

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου