Δευτέρα 23 Σεπτεμβρίου 2019

 Pharmacokinetics and Safety of Recombinant Human Interleukin-1 Receptor Antagonist GR007 in Healthy Chinese Subjects

Author’s Reply to: “Comment on: Pharmacokinetics and Safety of Recombinant Human Interleukin-1 Receptor Antagonist GR007 in Chinese Healthy Subjects”

Clinical and Pharmacokinetic Outcomes of Peak–Trough-Based Versus Trough-Based Vancomycin Therapeutic Drug Monitoring Approaches: A Pragmatic Randomized Controlled Trial

Abstract

Background

Vancomycin therapeutic drug monitoring (TDM) is based on achieving 24-h area under the concentration–time curve to minimum inhibitory concentration cure breakpoints (AUC24/MIC). Approaches to vancomycin TDM vary, with no head-to-head randomized controlled trial (RCT) comparisons to date.

Objectives

We aimed to compare clinical and pharmacokinetic outcomes between peak–trough-based and trough-only-based vancomycin TDM approaches and to determine the relationship between vancomycin AUC24/MIC and cure rates.

Methods

A multicentered pragmatic parallel-group RCT was conducted in Hamad Medical Corporation hospitals in Qatar. Adult non-dialysis patients initiated on vancomycin were randomized to peak–trough-based or trough-only-based vancomycin TDM. Primary endpoints included vancomycin AUC24/MIC ratio breakpoint for cure and clinical effectiveness (therapeutic cure vs therapeutic failure). Descriptive, inferential, and classification and regression tree (CART) statistical analyses were applied. NONMEM.v.7.3 was used to conduct population pharmacokinetic analyses and AUC24 calculations.

Results

Sixty-five patients were enrolled [trough-only-based-TDM (n = 35) and peak–trough-based-TDM (n = 30)]. Peak–trough-based TDM was significantly associated with higher therapeutic cure rates compared to trough-only-based TDM [76.7% vs 48.6%; p value = 0.02]. No statistically significant differences were observed for all-cause mortality, neutropenia, or nephrotoxicity between the two groups. Compared to trough-only-based TDM, peak–trough-based TDM was associated with less vancomycin total daily doses by 12.05 mg/kg/day (p value = 0.027). CART identified creatinine clearance (CLCR), AUC24/MIC, and TDM approach as significant determinants of therapeutic outcomes. All patients [n = 19,100%] with CLCR ≤ 7.85 L/h, AUC24/MIC ≤ 1256, who received peak–trough-based TDM achieved therapeutic cure. AUC24/MIC > 565 was identified to be correlated with cure in trough-only-based TDM recipients [n = 11,84.6%]. No minimum AUC24/MIC breakpoint was detected by CART in the peak–trough-based group.

Conclusion

Maintenance of target vancomycin exposures and implementation of peak–trough-based vancomycin TDM may improve vancomycin-associated cure rates. Larger scale RCTs are warranted to confirm these findings.

Population Pharmacokinetics of Voriconazole in Chinese Patients with Hematopoietic Stem Cell Transplantation

Abstract

Background and Objective

Voriconazole is widely recommended for the prevention and treatment of invasive fungal infections in hematopoietic stem cell transplantation patients. However, its use is limited by a narrow therapeutic range and large inter-individual variability. This study aimed to characterize the pharmacokinetics of voriconazole in Chinese hematopoietic stem cell transplantation patients, to explore factors affecting its pharmacokinetic parameters, and to provide recommendations for its optimal dosing regimens.

Methods

A total of 121 serum concentration samples from 23 patients were retrospectively included. Voriconazole concentrations were detected, and patient clinical data were recorded. Population pharmacokinetic analysis was performed by a non-linear, mixed-effect modeling approach. Goodness-of-fit plots, bootstrap method, prediction-corrected visual predictive check and external validation by an independent group of seven patients were performed to evaluate the final model.

Results

A one-compartment model with first-order elimination successfully described the data. The absorption rate constant was fixed at 1.1 h−1 and bioavailability was fixed at 0.895. The typical values for voriconazole clearance and distribution volume were 9.52 L/h and 155 L, respectively. CYP2C19*2 genotype and mycophenolate mofetil combination presented a significant impact on the clearance. Compared with CYP2C19*2 carriers, voriconazole clearance was proven to be higher in CYP2C19*1/*1 patients.

Conclusions

A population pharmacokinetic model of voriconazole was successfully established in Chinese hematopoietic stem cell transplantation patients. Based on the final model, CYP2C19*2 genotyping coupled with therapeutic drug monitoring seems to be useful to guide voriconazole dosing and to explain subtherapeutic concentrations in clinical practice.

Pharmacokinetics of the Novel Nonsteroidal Mineralocorticoid Receptor Antagonist Finerenone (BAY 94-8862) in Individuals with Mild or Moderate Hepatic Impairment

Abstract

Background and Objectives

Finerenone (BAY 94-8862) is a selective, nonsteroidal mineralocorticoid receptor antagonist. The aim of this study was to assess the effect of mild or moderate hepatic impairment on the pharmacokinetics, safety and tolerability of finerenone.

Methods

The study was conducted in a single-center, nonrandomized, noncontrolled, nonblinded observational design with group stratification. A single oral 5-mg dose of finerenone was administered as a tablet to participants with mild or moderate hepatic impairment (Child–Pugh A, score 5–6 [n = 9], or Child–Pugh B, score 7–9 [n = 9], respectively) and to age-, weight- and sex-matched healthy participants (n = 9). The pharmacokinetics of finerenone and its metabolites were assessed in plasma and urine, and safety and tolerability were monitored.

Results

Finerenone area under the plasma concentration–time curve (AUC) and unbound AUC were 38% and 55% greater, respectively, in participants with moderate hepatic impairment than in healthy participants, whereas maximum plasma concentration (Cmax) was unchanged. No clear effects on AUC or Cmax were seen in participants with mild hepatic impairment. Finerenone was safe and well tolerated in all participants.

Conclusion

The effects of mild or moderate hepatic impairment on systemic exposure of finerenone are small, consistent with its low hepatic extraction and preponderance of gastrointestinal over hepatic first-pass clearance. Considering the small increases in AUC and the absence of changes in Cmax, a dose adaptation does not appear to be warranted in patients with mild or moderate hepatic impairment.

Inhibitory Effect of Vonoprazan on the Metabolism of [ 14 C]Prasugrel in Human Liver Microsomes

Abstract

Background and Objectives

A recent report indicated that the pharmacodynamic interaction between clopidogrel and vonoprazan leading to attenuation of the anti-platelet effect of clopidogrel was unlikely to be caused by the inhibition of cytochrome P450 (CYP) 2B6, CYP2C19, or CYP3A4/5 by vonoprazan, based on in vitro CYP inhibition data. The current report investigates another important antiplatelet inhibitor, prasugrel, that is also activated through metabolism by CYP2B6, CYP2C19 and CYP3A4/5, for its CYP-based DDI potential with vonoprazan. The report describes in vitro metabolic inhibition assessments using radiolabeled prasugrel and human liver microsomes (HLMs).

Methods

Reversible and time-dependent inhibition studies of vonoprazan as well as esomeprazole on the formation of the active metabolite R-138727 of prasugrel were conducted using HLMs.

Results

Vonoprazan up to 10 μM, a concentration over 100-fold higher than the clinical maximum plasma concentration (Cmax) of 75.9 nM after 20 mg once daily for 7 days, did not significantly affect the formation of R-138727 from [14C]prasugrel via reversible or time-dependent inhibition.

Conclusions

The in vitro data show that the pharmacodynamic interaction reported in the literature between vonoprazan and prasugrel is unlikely to be caused by CYP inhibition by vonoprazan. The results were similar to those obtained from the study with clopidogrel.

Minimal Physiologically Based Pharmacokinetic Model of Intravenously and Orally Administered Delta-9-Tetrahydrocannabinol in Healthy Volunteers

Abstract

Background and Objectives

Lack of information on the pharmacokinetics of the active moiety of Cannabis or the metabolites of delta-9-tetrahydrocannabinol (THC) does not seem to be discouraging medical or recreational use. Cytochrome P450 (CYP) 2C9, the primary enzyme responsible for THC metabolism, has two single nucleotide polymorphisms—Arg144Cys (*2) and Ile359Leu (*3). In the Caucasian population, allelic frequency is between 0.08 and 0.14 for CYP2C9*2 and between 0.04 and 0.16 for CYP2C9*3. In vitro data suggest that metabolic capacity for the variants CYP2C9*2 and CYP2C9*3 is about one-third compared to wild-type CYP2C9. Previous work has suggested exposure to the terminal metabolite is genetically determined. We therefore sought to characterize the pharmacokinetics of THC and its major metabolites 11-hydroxy-delta-9-tetrahydrocannabinol (THC-OH) and 11-nor-9-carboxy-delta-9-tetrahydrocannabinol (THC-COOH) in healthy volunteers with known CYP2C9 status by non-compartmental analysis (NCA), compartmental modeling (CM) and minimal physiologically based pharmacokinetic (mPBPK) modeling.

Methods

Blood samples drawn for THC, THC-OH and THC-COOH after a single intravenous (IV) bolus of 0.1 mg/kg (0.32 μM/kg) THC were analyzed using a validated LC–MS/MS method. NCA generated initial estimates and CM and the mPBPK model were then fit to plasma concentration data using non-linear mixed-effects modeling. Blood samples from orally dosed (10, 25 and 50 mg) THC brownies were added to validate the model.

Results

THC can be described as a high hepatic extraction ratio drug with blood flow-dependent metabolism not restricted by protein binding. THC hepatic clearance is dependent on the CYP2C9 genetic variant in the population. High extraction drugs display route-dependent metabolism. When administered via the IV or inhalation routes, induction or inhibition of CYP2C9 should be non-contributory as the elimination of THC is dependent only on liver blood flow. THC-OH is also a high extraction ratio drug, but its hepatic clearance is significantly impacted by the hepatic diffusional barrier that impedes its access to hepatic CYP2C9. THC-COOH is glucuronidated and renally cleared; subjects homozygous for CYP2C9*3 have reduced exposure to this metabolite as a result of the polymorphism reducing THC production, the hepatic diffusional barrier impeding egress from the hepatocyte, and increased renal clearance.

Conclusion

It has recently been reported that the terminal metabolite THC-COOH is active, implying the exposure difference in individuals homozygous for CYP2C9*3 may become therapeutically relevant. Defining the metabolism of THC in humans is important, as it is increasingly being used as a drug to treat various diseases and its recreational use is also rising. We have used NCA, CM, and mPBPK modeling of THC and its metabolites to partially disentangle the complexity of cannabis disposition in humans.

Opioids: A Review of Pharmacokinetics and Pharmacodynamics in Neonates, Infants, and Children

Abstract

Pain management in the pediatric population is complex for many reasons. Mild pain is usually managed quite well with oral acetaminophen or ibuprofen. Situations involving more severe pain often require the use of an opioid, which may be administered by many different routes, depending on clinical necessity. Acute and chronic disease states, as well as the constantly changing maturational process, produce unique challenges at every level of pediatrics in dosing and management of all medications, especially with regard to high-risk opioids. Although there has been significant progress in the understanding of opioid pharmacokinetics and pharmacodynamics in neonates, infants, children, and adolescents, somewhat limited data exist from which necessary information, concerning the safe and effective use of these agents, may be drawn. The evidence here provided is intended to be helpful in directing the practitioner to patient-specific reasons for preferring one opioid over another. As our knowledge of opioids and their effects has grown, it has become clear that older medications like codeine and meperidine (pethidine) have very limited use in pediatrics. This review provides pharmacokinetic and pharmacodynamic evidence on the currently available opioids: morphine, fentanyl (and derivatives), codeine, meperidine, oxycodone, hydrocodone, hydromorphone, methadone, buprenorphine, butorphanol, nalbuphine, pentazocin, ketobemidone, tramadol, piritramide, naloxone and naltrexone. Morphine, being the most studied opioid analgesic, is the standard against which all others are compared. Pharmacokinetic parameters of morphine that have been found in neonates, i.e., higher volume of distribution, immature metabolic processes that develop at various rates, elimination that is variable based on age and weight, as well as treated and untreated disease processes, are an example of all opioids in the population discussed in this review. Outside the premature and neonatal population, the use of opioids in infants, children, and adolescents quickly begins to resemble the established values found in adults. As such, the concerns (risks) of these medications become comparable to those seen in adults.

In Vitro Metabolism by Aldehyde Oxidase Leads to Poor Pharmacokinetic Profile in Rats for c-Met Inhibitor MET401

Abstract

Background and Objectives

MET401 is a potent and selective c-Met inhibitor with a novel triazolopyrimidine scaffold. The aim of this study was to determine the pharmacokinetic profile of MET401 in preclinical species, and to identify the metabolic soft spot and enzyme involved, in order to help medicinal chemists to modify the compound to improve the pharmacokinetic profile.

Methods

A metabolite identification study was performed in different liver fractions from various species. Chemical inhibition with selective cytochrome P450 (CYP) and molybdenum hydroxylase inhibitors was carried out to identify the enzyme involved. The deuterium substitution strategy was adopted to reduce metabolism. Pharmacokinetic studies were performed in rats to confirm the effect.

Results

Although M-2 is a minor metabolite in liver microsomal incubations, it became the predominant metabolite in incubations with liver S9, cytosol, hepatocytes and rat pharmacokinetic study. M-2 was synthesized enzymatically and the structure was identified as a mono-oxidation on the triazolopyrimidine moiety. The M-2 formation was ascribed to aldehyde oxidase (AO)-mediated metabolism based on the following evidence—M-2 production was NADPH independent, pan-CYP inhibitor 1-aminobenzotriazole and xanthine oxidase inhibitor allopurinol did not inhibit M-2 formation, and AO inhibitors menadione and raloxifene inhibited M-2 formation. The deuterated analog MET763 demonstrated an improved pharmacokinetic profile with lower clearance, longer terminal half-life and double oral exposure compared with MET401 in rats.

Conclusions

These results indicate that the main metabolic pathway of MET401 is AO-mediated metabolism, which leads to poor in vivo pharmacokinetic profiles in rodents. The deuterium substitution strategy could be used to reduce AO-mediated metabolism liability.

Fluctuations in Pharmacokinetics Profiles of Monoclonal Antibodies

Abstract

Monoclonal antibodies (mAbs) are a group of drugs with predicted slow linear and target-mediated distribution and elimination. Visual inspection of published pharmacokinetic profiles of mAbs frequently reveals plateaus in the distribution phase or an increasing concentration many days after a single intravenous dose. A question which has been left unanswered until now is whether mAbs undergo recirculation mechanisms. If so, then which mechanisms are crucial for the fluctuation in their pharmacokinetics profiles? What is the impact of such mechanisms on mAb absorption, distribution and elimination? Current commentary accounts for the fluctuation of mAbs concentrations based on different mechanisms, as well in different phases of their in vivo disposition. Current knowledge shows significant impact of mAbs lymphatic recirculation on characteristics of their pharmacokinetics profiles. Fluctuating or plateau phases in pharmacokinetic profiles of mAbs are a consequence of multiple simultaneously occurring recirculatory as well as adsorption/desorption processes rather than only slow, continuous elimination. Lymphatic recirculation as well as other mechanisms appears to be an obvious element of the mAbs disposition. Periodic changes in the key factors affecting mAbs disposition can be responsible for the unpredictable concentration peaks in absorption, distribution and the elimination phase.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου