Δευτέρα 23 Σεπτεμβρίου 2019

Different roles of CXCR1 and CXCR2 in HTLV-1 carriers and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients

Abstract

One of the prominent features of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is the excessive recruitment of leukocytes to the central nervous system (CNS), which leads to an inflammatory response—with chemokines and their receptors playing the main role in this recruitment. The aim of the study was to examine the relation of CXCR1 and CXCR2, both of which are involved in the trafficking of lymphocytes into the CNS, with the outcome of HTLV-1 infection. The mRNA levels of CXCR1 and CXCR2 were examined in peripheral blood mononuclear cells (PBMCs) of HAM/TSP patients, HTLV-1 asymptomatic carriers (ACs), and healthy controls (HCs). Furthermore, the frequency of CD4+ and CD8+ T cells expressing CXCR1 and CXCR2 was evaluated in the studied groups. The results of the present study showed a substantial increase in the mean mRNA expression of CXCR2 in the HAM/TSP patients compared to the HCs and ACs (p < 0.001). A positive correlation was also found between PVL and CXCR2 mRNA expression in the total population of HTLV-1-infected subjects (R = 0.526, p < 0.001). Moreover, the percentage of CD8+ CXCR2-expressing cells was higher in HAM/TSP patients compared to ACs and HCs (p < 0.05, p < 0.01, respectively). Although the percentage of CD4+ CXCR2-expressing cells was higher in HAM/TSP patients than in ACs and HCs, a significant difference was only found between HAM/TSP patients and HCs (p < 0.05). No significant difference in the CXCR1 mRNA expression was observed in the studied groups. The frequency of the CD8+ CXCR1- and CD4+ CXCR1-expressing cells was significantly lower in HAM/TSP patients than in ACs and HCs (p < 0.001 and p < 0.01, respectively). In conclusion, the high frequency of CXCR2 CD8+ T cells and the high levels of CXCR2 mRNA expression in HAM/TSP patients are associated with disease pathogenesis, while the high frequencies of CXCR1 T cells in ACs might suggest that these cells act as effector CD8 T cells and are involved in controlling the viral spread and modulation of the immune response.

The monocytosis during human leptospirosis is associated with modest immune cell activation states

Abstract

Leptospirosis is a life-threatening zoonotic disease and it has been hypothesized that the innate immune system fails to control the infection through ill-characterized mechanisms. The aim of this observational study was to better evaluate the activation processes of monocytes at the early stage of the disease. Blood samples were taken from healthy donors (n = 37) and patients hospitalized for either non-severe (n = 25) or severe (n = 32) leptospirosis. Monocyte cell counts and phenotypes were assessed by flow cytometry. We analysed the expression of several cell activation markers: CD14, CD16, HLA-DR, CD69, TLR2, TLR4, CD11b and CD11c. Although monocyte values at admittance were not significantly different from controls, patients experienced significant monocytosis at 1.33 × 109/L (p < 0.0001 compared to controls: 0.56 × 109/L) during their hospital stay. This monocytosis observed during hospital stay was correlated to several surrogate markers of organ injury. Non-classical (CD14−CD16+) and intermediate (CD14+CD16+) monocyte subsets increased compared to controls (p < 0.05). Accordingly, classical monocyte subset (CD14+CD16−) showed decreased percentages (p < 0.0001). Levels of several cell surface activation molecules were decreased: HLA-DR involved in MHC class II antigen presentation, integrins CD11b and CD11c implicated in phagocytosis and cell recruitment (p < 0.0001). None of these parameters had a prognostic value. Results from this study showed that during acute human leptospirosis, patients experienced monocytosis with a switch toward an inflammation-related phenotype contrasted by low expression levels of markers implicated in monocyte function.

Increased SAMHD1 transcript expression correlates with interferon-related genes in HIV-1-infected patients

Abstract

Purpose

To investigate the contribution of SAMHD1 to HIV-1 infection in vivo and its relationship with IFN response, the expression of SAMHD1 and IFN-related pathways was evaluated in HIV-1-infected patients.

Methods

Peripheral blood mononuclear cells (PBMC) from 388 HIV-1-infected patients, both therapy naïve (n = 92) and long-term HAART treated (n = 296), and from 100 gender and age-matched healthy individuals were examined. CD4+ T cells, CD14+ monocytes and gut biopsies were also analyzed in HIV-1-infected subjects on suppressive antiretroviral therapy. Gene expression levels of SAMDH1, ISGs (MxA, MxB, HERC5, IRF7) and IRF3 were evaluated by real-time RT-PCR assays.

Results

SAMHD1 levels in HIV-1-positive patients were significantly increased compared to those in healthy donors. SAMHD1 expression was enhanced in treated patients compared to naïve patients (p < 0.0001) and healthy donors (p = 0.0038). Virologically suppressed treated patients exhibited higher SAMHD1 levels than healthy donors (p = 0.0008), viraemic patients (p = 0.0001) and naïve patients (p < 0.0001). SAMHD1 levels were also increased in CD4+ T cells compared to those in CD14+ monocytes and in PBMC compared to those of GALT. Moreover, SAMHD1 was expressed more strongly than ISGs in HIV-1-infected patients and positive correlations were found between SAMHD1, ISGs and IRF3 levels.

Conclusions

SAMHD1 is more strongly expressed than the classical IFN-related genes, increased during antiretroviral therapy and correlated with ISGs and IRF3 in HIV-1-infected patients.

Immune response triggered by Trypanosoma cruzi infection strikes adipose tissue homeostasis altering lipid storage, enzyme profile and adipokine expression

Abstract

Adipose tissue is a target of Trypanosoma cruzi infection being a parasite reservoir during the chronic phase in mice and humans. Previously, we reported that acute Trypanosoma cruzi infection in mice is linked to a severe adipose tissue loss, probably triggered by inflammation, as well as by the parasite itself. Here, we evaluated how infection affects adipose tissue homeostasis, considering adipocyte anabolic and catabolic pathways, the immune–endocrine pattern and the possible repercussion upon adipogenesis. During in vivo infection, both lipolytic and lipogenic pathways are profoundly affected, since the expression of lipolytic enzymes and lipogenic enzymes was intensely downregulated. A similar pattern was observed in isolated adipocytes from infected animals and in 3T3-L1 adipocytes infected in vitro with Trypanosoma cruzi. Moreover, 3T3-L1 adipocytes exposed to plasmas derived from infected animals also tend to downregulate lipolytic enzyme expression which was less evident regarding lipogenic enzymes. Moreover, in vivo-infected adipose tissue reveals a pro-inflammatory profile, with increased leucocyte infiltration accompanied by TNF and IL-6 overexpression, and adiponectin downregulation. Strikingly, the nuclear factor PPAR-γ is strongly decreased in adipocytes during in vivo infection. Attempts to favor PPAR-γ-mediated actions in the adipose tissue of infected animals using agonists failed, indicating that inflammation or parasite-derived factors are strongly involved in PPAR-γ inhibition. Here, we report that experimental acute Trypanosoma cruzi infection disrupts both adipocyte catabolic and anabolic metabolism secondary to PPAR-γ robust downregulation, tipping the balance towards to an adverse status compatible with the adipose tissue atrophy and the acquisition of an inflammatory phenotype.

Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis

Abstract

The early stage of oncogenesis is linked to the disorder of the cell cycle. Abnormal gene expression often leads to cell cycle disorders, resulting in malignant transformation of human cells. Epstein–Barr virus (EBV) is associated with a diverse range of human neoplasms, such as malignant lymphoma, nasopharyngeal carcinoma and gastric cancer. EBV mainly infects human lymphocytes and oropharyngeal epithelial cells. EBV is latent in lymphocytes for a long period of time, is detached from the cytoplasm by circular DNA, and can integrate into the chromosome of cells. EBV expresses a variety of latent genes during latent infection. The interaction between EBV latent genes and oncogenes leads to host cell cycle disturbances, including the promotion of G1/S phase transition and inhibition of cell apoptosis, thereby promoting the development of EBV-associated neoplasms. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis involve diverse genes and signal pathways. Here, we review the molecular mechanisms of EBV-driven cell cycle progression and promoting oncogenesis.

Identification of complement-related host genetic risk factors associated with influenza A(H1N1)pdm09 outcome: challenges ahead

Abstract

Influenza remains an important threat for human health, despite the extensive study of influenza viruses and the production of effective vaccines. In contrast to virus genetics determinants, host genetic factors with clinical impact remained unexplored until recently. The association between three single nucleotide polymorphisms (SNPs) and influenza outcome in a European population was investigated in the present study. All samples were collected during the influenza A(H1N1)pdm09 post-pandemic period 2010–11 and a sufficient number of severe and fatal cases was included. Host genomic DNA was isolated from pharyngeal samples of 110 patients from northern Greece with severe (n = 59) or mild (n = 51) influenza A(H1N1)pdm09 disease, at baseline, and the genotype of CD55 rs2564978, C1QBP rs3786054 and FCGR2A rs1801274 SNPs was investigated. Our findings suggest a relationship between the two complement-related SNPs, namely, the rare TT genotype of CD55 and the rare AA genotype of C1QBP with increased death risk. No significant differences were observed for FCGR2A genotypes neither with fatality nor disease severity. Additional large-scale genetic association studies are necessary for the identification of reliable host genetic risk factors associated with influenza A(H1N1)pdm09 outcome. Prophylactic intervention of additional high-risk populations, according to their genetic profile, will be a key achievement for the fight against influenza viruses.

Interaction of host and Staphylococcus aureus protease-system regulates virulence and pathogenicity

Abstract

Staphylococcus aureus causes various health care- and community-associated infections as well as certain chronic TH2 driven inflammatory diseases. It is a potent pathogen with serious virulence and associated high morbidity. Severe pathogenicity is accredited to the S. aureus secreted virulence factors such as proteases and host protease modulators. These virulence factors promote adhesion and invasion of bacteria through damage of tight junction barrier and keratinocytes. They inhibit activation and transmigration of various immune cells such as neutrophils (and neutrophil proteases) to evade opsono-phagocytosis and intracellular bacterial killing. Additionally, they protect the bacteria from extracellular killing by disrupting integrity of extracellular matrix. Platelet activation and agglutination is also impaired by these factors. They also block the classical as well as alternative pathways of complement activation and assist in spread of infection through blood and tissue. As these factors are exquisite factors of S. aureus mediated disease development, we have focused on review of diversification of various protease-system associated virulence factors, their structural building, diverse role in disease development and available therapeutic counter measures. This review summarises the role of protease-associated virulence factors during invasion and progression of disease.

Discrimination between recent and non-recent HIV infections using routine diagnostic serological assays

Abstract

The suitability of routine diagnostic HIV assays to accurately discriminate between recent and non-recent HIV infections has not been fully investigated. The aim of this study was to compare an established HIV recency assay, the Sedia limiting antigen HIV avidity assay (LAg), with the diagnostic assays; Abbott ARCHITECT HIV Ag/Ab Combo and INNO-LIA HIV line assays. Samples from all new HIV diagnoses in Ireland from January to December 2016 (n = 455) were tested. An extended logistic regression model, the Spiegelhalter–Knill–Jones method, was utilised to establish a scoring system to predict recency of HIV infection. As proof of concept, 50 well-characterised samples were obtained from the CEPHIA repository whose stage of infection was blinded to the authors, which were tested and analysed. The proportion of samples that were determined as recent was 18.1% for LAg, 6.4% with the ARCHITECT, and 14.5% in the INNO-LIA assay. There was a significant correlation between the ARCHITECT S/CO values and the LAg results, r = 0.717, p < 0.001. ROC analysis revealed that an ARCHITECT S/CO < 250 had a sensitivity and specificity of 90.32% and 89.83%, respectively. Combining the Abbott ARCHITECT HIV Ag/Ab Combo assay and INNO-LIA HIV assays resulted in an observed risk of being recent of 100%. Analysis of the CEPHIA samples revealed a strong agreement between the LAg assay and the combination of routine assays (κ = 0.908, p < 0.001). Our findings provide evidence that assays routinely employed to diagnose and confirm HIV infection may be utilised to determine the recency of HIV infection.

Biogenic Au@ZnO core–shell nanocomposites kill Staphylococcus aureus without provoking nuclear damage and cytotoxicity in mouse fibroblasts cells under hyperglycemic condition with enhanced wound healing proficiency

Abstract

The aim of the present study is focused on the synthesis of Au@ZnO core–shell nanocomposites, where zinc oxide is overlaid on biogenic gold nanoparticles obtained from Hibiscus Sabdariffa plant extract. Optical property of nanocomposites is investigated using UV–visible spectroscopy and crystal structure has been determined using X-ray crystallography (XRD) technique. The presence of functional groups on the surface of Au@ZnO core–shell nanocomposites has been observed by Fourier transforms infrared (FTIR) spectroscopy. Electron microscopy studies revealed the morphology of the above core–shell nanocomposites. The synthesized nanocomposite material has shown antimicrobial and anti-biofilm activity against Staphylococcus aureus and Methicillin Resistant Staphylococcus haemolyticus (MRSH). The microbes are notorious cross contaminant and are known to cause infection in open wounds. The possible antimicrobial mechanism of as synthesized nanomaterials has been investigated against Staphylococcus aureus and obtained data suggests that the antimicrobial activity could be due to release of reactive oxygen species (ROS). Present study has revealed that surface varnishing of biosynthesized gold nanoparticles through zinc oxide has improved its antibacterial proficiency against Staphylococcus aureus, whereas reducing its toxic effect towards mouse fibroblast cells under normal and hyperglycaemic condition. Further studies have been performed in mice model to understand the wound healing efficiency of Au@ZnO nanocomposites. The results obtained suggest the possible and effective use of as synthesized core shell nanocomposites in wound healing.

Differential interferon gene expression in bronchiolitis caused by respiratory syncytial virus-A genotype ON1

Abstract

Bronchiolitis severity is determined by a complex interaction among viral replication and antiviral immunity. The current respiratory syncytial virus (RSV)-A, genotype ON1 demonstrated a high replicative capacity but seemed to be clinically less severe than the previously circulating RSV-A, NA1. To learn insights about ON1 innate immune response, we analyzed expression levels of type I/III interferon (IFN)-related genes in the respiratory mucosa of infants with RSV bronchiolitis. We enrolled RSV-positive bronchiolitis patients over 12 epidemic seasons at a university hospital in Rome. From nasopharyngeal washings’ cells (46 positive to NA1, 47 to ON1 and 28 to RSV-B, genotype BA), the mRNA copy number of the type III IFN receptor (IFNLR1 and IL10RB subunits), and of the type I/III IFN-stimulated genes, MxA and ISG56, was calculated using the threshold cycle relative quantification method with respect to an invariant gene. Expression levels of type III IFN receptor subunits genes positively correlated to each other and did not differ in infants infected with different RSV genotypes. The ISGs levels also positively correlated between them but differed among groups. MxA levels were significantly higher in NA1-infected infants than in those with ON1 and BA; ISG56 expression was slightly higher in NA1 than in the other strains. Interestingly, a moderate negative correlation existed between viral load and both ISGs values in ON1-infected infants only. The reduced ISG levels elicited during infections with ON1 (and BA) may cause a weaker control of RSV replication and/or an inadequate host immune response which may impact the risk of respiratory sequelae.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου