Related Articles |
J Vis Exp. 2020 Mar 17;(157):
Authors: Chen S, Giannakou A, Golas J, Geles KG
Abstract
Tumor-stroma interactions play a critical role in the development of lung squamous carcinoma (LUSC). However, understanding how these dynamic interactions contribute to tissue architectural changes observed during tumorigenesis remains challenging due to the lack of appropriate models. In this protocol, we describe the generation of a 3D coculture model using a LUSC primary cell culture known as TUM622. TUM622 cells were established from a LUSC patient-derived xenograft (PDX) and have the unique property to form acinar-like structures when seeded in a basement membrane matrix. We demonstrate that TUM622 acini in 3D coculture recapitulate key features of tissue architecture during LUSC progression as well as the dynamic interactions between LUSC cells and components of the tumor microenvironment (TME), including the extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs). We further adapt our principal 3D culturing protocol to demonstrate how this system could be utilized for various downstream analyses. Overall, this organoid model creates a biologically rich and adaptable platform that enables one to gain insight into the cell-intrinsic and extrinsic mechanisms that promote the disruption of epithelial architectures during carcinoma progression and will aid the search for new therapeutic targets and diagnostic markers.
PMID: 32250351 [PubMed - as supplied by publisher]
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου