Τετάρτη 7 Αυγούστου 2019

Molecular detection of two major gastrointestinal parasite genera in cattle using a novel droplet digital PCR approach

Abstract

Cooperia sp. and Ostertagia sp. are two cosmopolitan parasitic nematodes often found in mixed gastrointestinal infections in cattle across temperate regions. In light of the recent increase in the emergence of anthelmintic resistance in these and other nematodes derived from cattle around the globe, and their negative impact on animal health and productivity, novel molecular assays need to be put forth in order to facilitate the monitoring of parasite burden in infected herds, using pasture and/or fecal samples. Here, we describe a novel droplet digital PCR platform–based concept for precise identification and quantification of the two most abundant and important parasite genera in grazing western European cattle. By exploiting a single nucleotide difference in the two parasites’ ITS2 sequence regions, we have developed two specific hydrolysis probes labeled with FAM™ or HEX™ fluorophores, which can not only distinguish between the DNA sequences of the two, but also quantify them in mixed DNA samples. A third, newly developed universal probe was also tested along the genus-specific probes to provide a robust and accurate reference. It was evident that the universal probe displayed congruent results to those obtained by the genus-specific probes when used with DNA from both parasites in a single sample. All in all, the results of our assay suggest that this novel protocol could be used to distinguish and quantify cattle parasites belonging to the two most important genera (i.e., Cooperia and Ostertagia) in a single mixed DNA sample.

Effects of temperature on the survival of Sarcoptes scabiei of black bear ( Ursus americanus ) origin

Abstract

For two decades, the incidence and range of sarcoptic mange in black bears (Ursus americanus) in Pennsylvania has increased. The causative agent, Sarcoptes scabiei, can be directly or indirectly transmitted; therefore, data on environmental persistence is important for guiding management and public communications. The objective of this study was to determine the survival of S. scabiei at different temperatures. Full section skin samples and superficial skin scrapes were collected from bears immediately after euthanasia due to severe mange. After ~ 24 h on ice packs (shipment to lab), samples were placed in dishes at 0, 4, 18, or 30 °C and 60, 20, 12, and 25% relative humidity, respectively, and the percentage of mites alive, by life stage, was periodically determined. Humidity was recorded but not controlled. Temperature significantly affected mite survival, which was shortest at 0 °C (mostly ≤ 4 h) and longest at 4 °C (up to 13 days). No mites survived beyond 8 days at 18 °C or 6 days at 30 °C. Mites from full-thickness skin sections survived significantly longer than those from superficial skin scrapes. Adults typically survived longer than nymphs and larvae except at 30 °C where adults survived the shortest time. These data indicate that at cooler temperatures, S. scabiei can survive for days to over a week in the environment, especially if on host skin. However, these data also indicate that the environment is unlikely to be a long-term source of S. scabiei infection to bears, other wildlife, or domestic animals.

The cost of being a killer’s accomplice: Trypanosoma cruzi impairs the fitness of kissing bugs

Abstract

Relatively little is known about the fitness effects and life history trade-offs in medically important parasites and their insect vectors. One such case is the triatomine bugs and the parasite Trypanosoma cruzi, the key actors in Chagas disease. Previous studies have revealed some costs but have not simultaneously examined traits related to development, reproduction, and survival or their possible trade-offs. In addition, these studies have not compared the effects of genetically different T. cruzi strains that differ in their weakening effects in their vertebrate hosts. We compared the body size of the bugs after infection, the number of eggs laid, hatching/non-hatching rate, hatching success, survival, and the resulting number of parasites in Meccus (Triatomapallidipennisbugs that were experimentally infected with two strains of T. cruzi (Chilpancingo [CH], the most debilitating in vertebrates; and Morelos [MO], the least debilitating) (both belonging to TcI group). Our results showed that infection affects size (MO < CH; MO and CH = control), number of eggs laid (MO and CH < control) hatching/non-hatching rate (MO < control < CH), hatching success (control < MO, CH = control = MO), and survival (Chilpancingo < Morelos < control). In addition, the CH strain produced more parasites than the MO strain. These results suggest that (a) infection costs depend on the parasite’s origin, (b) the more debilitating effects of the CH strain are due to its increased proliferation in the host, and (c) differences in pathogenicity among T. cruzi strains can be maintained through their different effects on hosts’ life history traits. Probably, the vectorial capacity mediated by a more aggressive strain could be reduced due to its costs on the triatomine, leading to a lower risk of vertebrate and invertebrate infection in natural populations.

Screening of wild ruminants from the Kaunertal and other alpine regions of Tyrol (Austria) for vector-borne pathogens

Abstract

Knowledge about vector-borne pathogens important for human and veterinary medicine in wild ruminants in Tyrol (Austria) is scarce. Blood samples from Alpine ibex (Capra ibexn = 44), Alpine chamois (Rupicapra rupicapran = 21), roe deer (Capreolus capreolusn = 18) and red deer (Cervus elaphusn = 6) were collected over a period of 4 years (2015–2018) in four regions in North Tyrol, with a primary focus on the Kaunertal. Blood spots on filter paper were tested for the presence of DNA of vector-borne pathogens (Anaplasmataceae, Piroplasmida, Rickettsia and filarioid helminths). Anaplasma phagocytophilum and Babesia capreoli were detected in two of 89 (2.3%) blood samples. Rickettsia spp., Theileria spp. and filarioid helminths were not documented. One Alpine chamois was positive for A. phagocytophilum and B. capreoli. Moreover, an ibex from the Kaunertal region was positive for A. phagocytophilum. While the ibex was a kid less than 1 year old, the chamois was an adult individual. Further research is recommended to evaluate effects of climate change on infection rates of North Tyrolean wild ruminants by these pathogens and the distribution of their vectors.

Identification of a new type of haematopoietic progenitor kinase-interacting protein (HIP-55) in Aedes aegypti mosquito haemocytes and its involvement in immunity-like functions in mosquito: a molecular study

Abstract

In this study, we characterize the HIP-55 protein in the mosquito Aedes aegypti for the first time. HIP-55 is a 55-kDa HPK1-interacting protein that is also called SH3P7. HIP-55 constitutively binds HPK1 ‘via’ an HPK1 proline-rich motif 2(PR2) through its C-terminal SH3 domain. HIP-55 critically interacts with ZAP-70, and this interaction was induced by TCR signalling. ZAP-70 phosphorylated HIP-55 at Tyr-334 and Tyr-344 in vitro and in vivo. In our previous findings, AaZAP gene expression strongly proved that AaZAP-70 was involved in immunity-like functions in mosquito. Northern blot analysis of HIP-55 mRNA expression confirmed that it is only expressed in the abdomen and haemocyte tissues; this prediction correlates 100% and a polyclonal antibody also confirmed its localization in haemocytes and the abdomen. We prepared extracts to show the cytoplasmic expression (CE) of this protein. Previous results had proven that this protein is secreted from the cytoplasm; thus, we confirmed here that the protein is a cytoplasmic adaptor protein in mosquitoes and mammalian systems. Furthermore, our polyclonal antibody against HIP-55 also demonstrated that this protein is found in haemocytes and abdomen tissues, which assumes that the protein may be involved in phagocytic-like functions. RNAi (siRNA) silencing studies were used to degrade mosquito HIP-55; however, silencing only slightly affected the HIP-55 sequence and the gene transcriptional level. To characterize this protein, we cloned 609 bp from the 1.6-kb full-length cDNA using a pET28 vector for polyclonal antibody production.
Graphical abstract

Schistosoma japonicum cathepsin B as potential diagnostic antigen for Asian zoonotic schistosomiasis

Abstract

In this study, the diagnostic value of Schistosoma japonicum cathepsin B (SjCatB) was evaluated as an antigen for the early detection of S. japonicum infection. SjCatB is a key protease used by the cercaria to penetrate the intact skin of the host for transdermal infection. The early exposure of the host’s immune system to this enzyme may elicit early production of antibodies against this molecule. Therefore, the recombinant SjCatB (rSjCatB) was expressed in Escherichia coli with N-terminal 6xHis-tag. rSjCatB was tested for its performance as a diagnostic antigen using indirect enzyme-linked immunosorbent assay (ELISA) with sera from experimentally infected mice collected at > 8 weeks post-infection. Showing 100% sensitivity and 95.0% specificity in the ELISA, rSjCatB was then evaluated with sera from experimentally infected mice collected at 1–7 weeks post-infection to determine how early the antibodies can be detected. Results showed that as early as 6 weeks post-infection, 2 of the 3 infected mice were found to be positive with the antibodies against SjCatB. Furthermore, the potential of the recombinant antigen in detecting human schistosomiasis was evaluated with archived serum samples collected from individuals who had been diagnosed with S. japonicuminfection by stool examination. Results showed 86.7% sensitivity and 96.7% specificity suggesting its high diagnostic potential for human schistosomiasis. In addition, SjCatB showed minimal cross-reaction with the sera collected from patients with other parasitic diseases. In conclusion, the results of this study suggest that SjCatB will be useful in the development of a sensitive and specific early detection test for S. japonicum infection.

Population genetic analysis of trematode Parasaccocoelium mugili Zhukov, 1971 (Haploporidae Nicoll, 1914) from the Russian Far East and Vietnam based on ribosomal ITS and mitochondrial COI gene partial sequence data

Abstract

Intraspecific variation of Parasaccocoelium mugili collected from mullet fish of the south of Russian Far East and Vietnam has previously been estimated on the basis of two molecular markers: ribosomal internal transcribed spacer 1 (ITS1) rDNA and mitochondrial cytochrome oxidase I (COI) gene sequences. In the present study, molecular identification of this species from the Kievka River, Primorye and from Vietnam was performed by analysis of 28S rDNA sequences. Analysis of ITS1 rDNA sequences variation revealed two highly differentiated main groups, representing trematode specimens from the two regions. Genetic variation within each region was relatively low. Mitochondrial COI gene sequence data analysis revealed fixed nucleotide and amino acid substitutions, and supported the existence of two genetically different groups associated with geographical origin. Analysis of the COI gene fragments showed extremely high variation within Russian and Vietnamese P. mugili samples. Our results for P. mugilimost probably represent a case of initial step of allopotric speciation for this trematode, caused by living strategy of its definitive host at evolutionary scale. Mitochondrial DNA sequence data show that existence of gene flow between local populations of P. mugiliin the Primorye Region caused by definitive hosts can be proposed.

Kudoa sp. (Myxozoa, Multivalvulida): first report in five commercial fish species from the Canary Islands-FAO 34 (Macaronesia-Spain)

Abstract

Kudoid myxozoans have been reported causing serious chronic problems in marine fisheries, by reducing the market value of infected fish through pathological damage to the host musculature. We report here the overall prevalence of a Kudoa species in 84/277 (30.3%) fishes from 20 different species of high commercial value captured between October 2011 and December 2013 from the United Nations Food and Agriculture Organization (FAO) 34 commercial fishing area, near the coast of the Canary Islands (Spain). Macroscopic examination showed myxozoan-like cysts in skeletal muscle from 5 of the 20 fish species examined, with the following prevalences: Pagellus acarne (86.7%), Pagellus erythrinus (46.5%), Serranus cabrilla (27.8%), Spondyliosoma cantharus (19.4%), and Sarpa salpa (28.6%). Infection intensity was determined based on spore counts following muscle tissue digestion. Morphometric studies to characterize the species and DNA sequence analysis results suggest that these infections are attributable to a Kudoa species closely related to Kudoa trachuri. This paper reports the first study on a multivalvulidan species to be identified from the Canary Islands. Furthermore, this is the first report of Kudoa parasites in all of the hosts mentioned above, with the exception of Pacarne.

Susceptibility to leishmaniasis is affected by host SLC11A1 gene polymorphisms: a systematic review and meta-analysis

Abstract

Leishmaniases are cutaneous, mucocutaneous, and visceral diseases affecting humans and domesticated animals mostly in the tropical and subtropical areas of the planet. Host genetics have been widely investigated for their role in developing various infectious diseases. The SLC11A1 gene has been reported to play a role in neutrophil function and is associated with susceptibility to infectious and inflammatory diseases such as tuberculosis or rheumatoid arthritis. In the present meta-analysis, we investigate the genetic association of SLC11A1 polymorphisms with susceptibility to leishmaniasis. Genotypes and other risk-related data were collected from 13 case-control and family-based studies (after literature search). Conventional random-effects meta-analysis was performed using STATA 13. To pool case-control and family-based data, the weighted Stouffer’s method was also applied. Eight polymorphisms were investigated: rs2276631, rs3731865, rs3731864, rs17221959, rs201565523, rs2279015, rs17235409, and rs17235416. We found that rs17235409 (D543N) and rs17235416 (1729 + 55del4) are significantly associated with a risk for cutaneous leishmaniasis (CL), whereas rs17221959, rs2279015, and rs17235409 are associated with visceral leishmaniasis (VL). Our results suggest that polymorphisms in SLC11A1 affect susceptibility to CL and VL. These findings open new pathways in understanding macrophage response to Leishmania infection and the genetic factors predisposing to symptomatic CL or VL that can lead to the usage of predictive biomarkers in populations at risk.

Morphological and molecular characterization of avian trypanosomes in raptors from Thailand

Abstract

From September 2012 to May 2018, blood samples from 364 raptors (mostly adults) were collected and screened for trypanosomes and haemosporidians by microscopic examination and nested polymerase chain reactions (PCR). Trypanosoma spp. were identified in 15 birds from eight different species. Light microscopy revealed 14 cases of infection with Trypanosoma cf. corvi, including one each in black-shouldered kite (Elanus caeruleusn = 49), Brahminy kite (Haliastur indusn = 50), and spotted owlet (SO, Athene braman = 27); two mountain hawk-eagles (Spizaetus nipalensisn = 3); and three each in Asian barred owlets (ABO, Glaucidium cuculoidesn = 27), barn owls (BO, Tyto alban = 65) and collared scops owls (CSO, Otus lettian = 41). In addition, one case of infection with T. avium was identified in an oriental scops owl (OSO, Otus sunian = 2). All infected raptors showed very low parasitemia levels. The PCR detected more three positives in one CSO, one Japanese sparrowhawk (Accipiter gularis), and one OSO. The sensitivity and specificity of the PCR method were 93.3% and 99.1%, respectively. The overall infection rate was very low (4.9%). The highest infection rate was recorded in cold-dry season (9.9%). Coinfection of Plasmodium with trypanosomes was found in all three ABOs. Coinfection with Haemoproteus spp. was found in one BO, three CSOs, and one SO. Coinfection with Haemoproteus spp. and Leucocytozoon danilewskyi was found in the OSO. Microfilarias were detected in one ABO and one CSO. The ultrastructure of trypomastigotes of T. cf. corvi in an ABO revealed fine structures. All small subunit ribosomal RNA (SSU rRNA) sequences belong to two clades: T. avium and T. corvi-culicavium complex/group. SSU rRNA gene amplification was not successful in one BO. The raptors with trypanosome infections showed normal hematological values and healthy appearance. Furthermore, this is the first report of T. avium in a nocturnal raptor from Thailand.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου