Τρίτη 29 Οκτωβρίου 2019

Development of multiplex PCR to detect slow rust resistance genes Lr34 and Lr46 in wheat

Abstract

Leaf rust caused by Puccinia triticina belongs to one of the most dangerous fungal diseases of wheat (Triticum aestivum L.) and is the cause of large yield losses every year. Here we report a multiplex polymerase chain reaction (PCR) assay, which was developed for detection of two important wheat slow rust resistance genes Lr34 and Lr46, using two molecular markers: csLV34 and Xwmc44, respectively. The presence of genes was analyzed in one winter wheat variety TX89D6435 and five spring wheat varieties: Pavon F76, Parula ‘S’, Rayon 89, Kern, Mochis 88. Both Lr34 and Lr46 genes were identified in variety TX89D6435, gene Lr34 was also identified in Parula ‘S’ and Kern varieties, and gene L46 occurs in Pavon F76 and Mochis 88 variety. None of the resistance genes tested was detected in the Rayon 89 variety. The use of the multiplex PCR method allowed to shorten the analysis time, reduce costs of analyses, and reduce the workload.

Comments on: “Meta-analysis of association between Arg326Gln (rs1503185) and Gln276Pro (rs1566734) polymorphisms of PTPRJ gene and cancer risk”

Differentially methylated region in bovine MIMT1 detected by small-scale whole-genome methylation sequencing

Abstract

We previously showed that deregulation of PEG3 domain genes is associated with intrauterine growth restriction (IUGR) in cattle. Here, we carried out genome-wide DNA methylation analysis of foetal placenta in two IUGR and wild-type samples and identified a differentially methylated region (DMR) in intron 2 of MIMT1. Pyrosequencing on a larger sample size (n = 20) confirmed significantly lower (P < 0.001) MIMT1-DMR methylation in foetal and maternal placenta of IUGR than wild-type conceptuses. Our study demonstrates that small-scale whole-genome bisulphite sequencing can be used to identify epigenetic regulatory elements in a defined genome locus.

Comparison of aminotransferases of three Bacillus strains Bacillus altitudinis W3, Bacillus velezensis SYBC H47, and Bacillus amyloliquefaciens YP6 via genome analysis and bioinformatics

Abstract

Aminotransferases have attracted considerable attention due to their extraordinary potential for the biosynthesis of chiral amines. Research on transaminase genes can facilitate their application to various fields. Herein, 89 putative aminotransferase genes potentially encoding useful biocatalysts were identified in three Bacillus strains genomes by genome annotation. Enzymes encoded by genes ota3ota8otae6otae21otaf1otaf8, and otaf26 belong to pyridoxine 5′-phosphate-dependent enzyme class IV. These seven ω-aminotransferase genes are highly conserved according to phylogenetic tree and bioinformatics analyses, as are the putative lysine catalytic residues in the corresponding enzymes (ω-BPTA 1–7). The enzymes may possess similar activity to ω-aminotransferases from Arthrobacter sp. KNK 168. The potential application of these novel enzymes for the synthesis of medicinal amino compounds will be explored in future genetic engineering studies.

Quantitative analysis of black blotching in a crossbred red tilapia and its effects on performance traits via a path analysis methodology

Abstract

Red tilapia is a phenotype with potential value to the tilapia industry due to its attractive skin coloration. However, the presence of black blotches scattered on the body makes these fish less valuable than blemish-free red fish. The correlation between the degree of blotching and other economic traits is important for selective breeding programs including high-performance red fish without black blotches. Therefore, this study aimed to assess the magnitude and direct and indirect effects of blotching in crossbred red tilapia on the growth rate and body measure traits using path analysis methodology. Six genetic groups were evaluated in terms of body measurements, body weight rate, and proportion of black blotching over 250 days of growth: Chitralada and Red-Stirling; crossbred F1—♀ Red-Stirling × ♂ Chitralada and ♀ Chitralada × ♂ Red-Stirling, and the introgressive crossbreeding—♀ CR × ♂ Chitralada and ♀ Chitralada × ♂ CR (C × CR). All variables showed high and positive linear correlations. Individuals with black blotches had lower coefficients of correlation with other variables (body weight and measurements); the direct and indirect effects are near zero. The path analysis indicated a lack of genetic correlation between the degree of black blotches and the economic traits of red tilapia. This facilitates the development of high growth performance red fish with blotched-free reddish skin.

Dynamic QTL for adult plant resistance to powdery mildew in common wheat ( Triticum aestivum L.)

Abstract

Agriculture will benefit from a rigorous characterization of genes for adult plant resistance (APR) since this gene class was recognized to provide more durable protection from plant diseases. The present study reports the identification of APR loci to powdery mildew in German winter wheat cultivars Cortez and Atlantis. Cortez was previously shown to carry all-stage resistance gene Pm3e. To avoid interference of Pm3e in APR studies, line 6037 that lacked Pm3e but showed field resistance from doubled-haploid (DH) population Atlantis/Cortez was used in two backcrosses to Atlantis for the establishment of DH population 6037/Atlantis//Atlantis. APR was assessed in the greenhouse 10, 15, and 20 days after inoculation (dai) from the 4-leaf stage onwards and combined with single-nucleotide polymorphism data in a genome-wide association study (GWAS) and a linkage map-based quantitative trait loci (QTL) analysis. In GWAS, two QTL were detected: one on chromosome 1BL 10 dai, the other on chromosome 2BL 20 dai. In conventional QTL analysis, both QTL were detected with all three disease ratings: the QTL on chromosome 1BL explained a maximum of 35.2% of the phenotypic variation 10 dai, whereas the QTL on chromosome 2BL explained a maximum of 43.5% of the phenotypic variation 20 dai. Compared with GWAS, linkage map-based QTL analysis allowed following the dynamics of QTL action. The two large-effect QTL for APR to powdery mildew with dynamic gene action can be useful for the enhancement of wheat germplasm.

3′ end of eae gene-based fluorescence DNA nanosensor for detection of E. coli O157:H7

Abstract

Escherichia coli O157:H7 bacterium as a zoonotic pathogen is one of the most important causative agents of foodborne illnesses worldwide. Due to the serious concerns in public health and enormous economic losses in agriculture and food industry, it is very necessary to develop novel technology–based methods for sensitive and rapid detection of this bacterium in contaminated resources. In this study, a sensitive and selective fluorescence DNA nanosensing platform based on graphene oxide (GO) and the 3′ end of eae gene as specific sequence was developed for the detection of E. coli O157:H7. In this platform, fluorescence resonance energy transfer (FRET) process between GO- and FAM-labeled eae gene probe was used for the diagnosis of E. coli O157:H7. Following the immobilization of the eae gene probe on GO, fluorescence emission of FAM was quenched. In hybridization reaction, by adding the complementary DNA, fluorescence emission of FAM was significantly increased and recovered to 93%. The performance of sensor for detection of E. coli O157:H7 genomic DNA was determined 10 pg genomic DNA per 1 ml Tris-HCl hybridization buffer which was significantly more sensitive than PCR method. In conclusion, the results indicated that GO eae gene-based nanosensor has potential to be developed as a rapid and sensitive diagnostic device besides PCR methods for the detection of E. coli O157:H7 bacteria.

MLPA as a complementary tool for diagnosis of chromosome 21 aberrations in childhood BCP-ALL

Abstract

Chromosome 21 abnormalities are the most frequent genetic findings in childhood B cell precursor acute lymphoblastic leukemia (BCP-ALL) cases. Majority of patients are effectively diagnosed with fluorescence in situ hybridization (FISH) and karyotyping; however, some cases may require additional tools to be used. Bone marrow samples of 373 childhood BCP-ALL patients were tested for chromosome 21 copy number variations (CNVs) with Multiplex Ligation-dependent Probe Amplification (MLPA) P327 array. Results from MLPA and cytogenetics were compared between groups according to the type of abnormality found on chromosome 21. Out the group of 235 patients, chromosome 21 multiplication was found by FISH assay in 56 cases (23.81%), ETV6-RUNX1 fusion in 34 (14.47%) and iAMP21 in 3 (1.28%) children, remaining 142 (60.43%) patients had no known chromosome 21 aberration. Median peak ratios of all tested probes in MLPA in aforementioned groups were 1.47 (IQR 1.28–1.77) vs. 1.00 (IQR 1.00–1.09) vs. 2.79 (IQR 1.97–2.83) vs. 1.00 (1.00–1.11), respectively. Aforementioned peak ratio of ETV6-RUNX1 fusion group was similar with patients of no known chromosome 21 aberration (p = 0.71). Interestingly, both groups differed from patients with chromosome 21 multiplication (p < 10−5) and with iAMP21 (p < 10−5). All cases of iAMP21 were correctly recognized by MLPA. MLPA seems to be good additional tool in the diagnostic process of chromosome 21 CNVs, especially in cases with iAMP21.

Relevance of solute carrier family 5 transporter defects to inherited and acquired human disease

Abstract

The solute carrier (SLC) group of membrane transport proteins is crucial for cells via their control of import and export of vital molecules across the cellular membrane. Defects in these transporters with narrow substrate specificities cause monogenic disorders, giving us essential clues of their precise roles in cellular functioning. The SLC5 family in particular has been linked to various human diseases, of mild and severe phenotype as well as high and low prevalence. In this review, we describe the effects on health of SLC5 dysfunction and dysregulation by summarizing findings in patients with transporter gene defects. Patients display a plethora of pathologies which include glucose/galactose malabsorption, familiar renal glycosuria, thyroid dyshormonogenesis, and distal hereditary motor neuronopathies. In addition, the therapeutic potential of intervening in transporter activities for treating common diseases such as diabetes and cancer is explored.

DNA repair in cancer initiation, progression, and therapy—a double-edged sword

Abstract

Genomic and mitochondrial DNA molecules are exposed continuously for a damaging activity of chemical, physical, and internal genotoxicants. When DNA repair machinery is not working efficiently, the generation of DNA lesions and mutations leads to carcinogenic transformation. The high number of mutation going up to 105 per cell was recognized as a driving force of oncogenesis. Moreover, a high activity of DNA repair genes was hypothesized as a predisposition to metastasis. DNA repair potential has to be taken into account attempting to chemo- and/or radiotherapy. A low activity of DNA repair genes makes tumor cells more sensitive to therapy, but on the other hand, non-tumor cells getting lesions could form second primary cancer. Contrary, high activity of DNA repair genes counteracts attempted therapy. It means an individualized therapy based on recognition of DNA repair potential is recommended.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου