Δευτέρα 21 Οκτωβρίου 2019

Deactivation and mislocalization of Toxoplasma gondii rhoptry protein 18 induced by a single amino acid mutation on the proton transport catalytic aspartic acid
Publication date: January 2020
Source: Microbiological Research, Volume 230
Author(s): Yang Zhang, Bo Shiun Lai, Mario Juhas
Abstract
Rhoptry protein 18 (ROP18) is a major determinant of strain-specific virulence in Toxoplasma gondii. The kinase activity of ROP18 is required for acute virulence, while the aspartate in the catalytic loop of ROP18 is considered essential for phosphoryl transfer. We showed that a single amino acid mutation at the catalytic aspartate residue (D409A mutation) significantly altered ROP18 kinase activity in vitro, and abolished ROP18-mediated ATF6β degradation. Furthermore, the investigated single amino acid mutation in ROP18 led to alternation of subcellular localization of ROP18 protein.
Our findings demonstrate that a single amino acid mutation on the proton transport catalytic aspartic acid induced alternations associated with ROP18 protein.

Influence of PacC on the environmental stress adaptability and cell wall components of Ganoderma lucidum
Publication date: January 2020
Source: Microbiological Research, Volume 230
Author(s): Yanru Hu, Lingdan Lian, Jiale Xia, Shishan Hu, Wenzhao Xu, Jing Zhu, Ang Ren, Liang Shi, Ming Wen Zhao
Abstract
The transcription factor PacC/Rim101 participates in environmental pH adaptation, development and secondary metabolism in many fungi, but whether PacC/Rim101 contributes to fungal adaptation to environmental stress remains unclear. In our previous study, a homologous gene of PacC/Rim101 was identified, and PacC-silenced strains of the agaricomycete Ganoderma lucidum were constructed. In this study, we further investigated the functions of PacC in G. lucidum and found that PacC-silenced strains were hypersensitive to environmental stresses, such as osmotic stress, oxidative stress and cell wall stress, compared with wild-type (WT) and empty-vector control (CK) strains. In addition, transmission electron microscopy images of the cell wall structure showed that the cell walls of the PacC-silenced strains were thinner (by approximately 25–30%) than those of the WT and CK strains. Further analysis of cell wall composition showed that the β-1,3-glucan content in the PacC-silenced strains was only approximately 78–80% of that in the WT strain, and the changes in β-1,3-glucan content were consistent with downregulation of glucan synthase gene expression. The ability of PacC to bind to the promoters of glucan synthase-encoding genes confirms that PacC transcriptionally regulates these genes.

Two pathways for thiosulfate oxidation in the alphaproteobacterial chemolithotroph Paracoccus thiocyanatus SST
Publication date: January 2020
Source: Microbiological Research, Volume 230
Author(s): Moidu Jameela Rameez, Prosenjit Pyne, Subhrangshu Mandal, Sumit Chatterjee, Masrure Alam, Sabyasachi Bhattacharya, Nibendu Mondal, Jagannath Sarkar, Wriddhiman Ghosh
Abstract
Chemolithotrophic bacteria oxidize various sulfur species for energy and electrons, thereby operationalizing biogeochemical sulfur cycles in nature. The best-studied pathway of bacterial sulfur-chemolithotrophy involves direct oxidation of thiosulfate (S2O32−) to sulfate (SO42−) without any free intermediate. This pathway mediated by SoxXAYZBCD is apparently the exclusive mechanism of thiosulfate oxidation in facultatively chemolithotrophic alphaproteobacteria. Here we explore the molecular mechanisms of sulfur oxidation in the thiosulfate- and tetrathionate(S4O62−)-oxidizing alphaproteobacterium Paracoccus thiocyanatus SST, and compare them with the prototypical Sox process of Paracoccus pantotrophus. Our results reveal a unique case where an alphaproteobacterium has Sox as its secondary pathway of thiosulfate oxidation converting ∼10% of the thiosulfate supplied, whilst ∼90% of the substrate is oxidized via a pathway that produces tetrathionate as an intermediate. Sulfur oxidation kinetics of a deletion mutant showed that thiosulfate-to-tetrathionate conversion, in SST, is catalyzed by a thiosulfate dehydrogenase (TsdA) homolog that has far-higher substrate-affinity than the Sox system of this bacterium, which in turn is also less efficient than the Ppantotrophus Sox. Deletion of soxB abolished sulfate-formation from thiosulfate/tetrathionate, while thiosulfate-to-tetrathionate conversion remained unperturbed. Physiological studies revealed the involvement of glutathione in SST tetrathionate oxidation. However, zero impact of the insertional mutation of a thiol dehydrotransferase (thdT) homolog, together with the absence of sulfite as an intermediate, indicated that SST tetrathionate oxidation is mechanistically novel, and distinct from its betaproteobacterial counterpart mediated by glutathione, ThdT, SoxBCD and sulfite:acceptor oxidoreductase. The present findings highlight extensive functional diversification of sulfur-oxidizing enzymes across phylogenetically close, as well as distant, bacteria.
Graphical abstract

Graphical abstract for this article

Inhibition of Rhizoctonia solani RhCh-14 and Pythium ultimum PyFr-14 by Paenibacillus polymyxa NMA1017 and Burkholderia cenocepacia CACua-24: A proposal for biocontrol of phytopathogenic fungi
Publication date: January 2020
Source: Microbiological Research, Volume 230
Author(s): Belén Chávez-Ramírez, Jeniffer Chris Kerber-Díaz, Marí Carmen Acoltzi-Conde, J. Antonio Ibarra, María-Soledad Vásquez-Murrieta, Paulina Estrada-de los Santos
Abstract
Biocontrol has emerged in recent years as an alternative to pesticides. Given the importance of environmental preservation using biocontrol, in this study two antagonistic bacteria against phytopathogenic fungi were isolated and evaluated. These bacterial strains, identified as Paenibacillus polymyxa NMA1017 and Burkholderia cenocepacia CACua-24, inhibited (70 to 80%) the development of two phytopathogens of economic importance: the fungus Rhizoctonia solani RhCh-14, isolated from chili pepper, and the oomycete Pythium ultimum PyFr-14, isolated from tomato. The spectrum was not limited to the previous pathogens, but also to other phytopathogenic fungus, some bacteria and other oomycetes. Fungi-bacteria microcultures observed with optical and scanning electron microscopy revealed hyphae disintegration and pores formation. The antifungal activity was found also in the supernatant, suggesting a diffusible compound is present. Innocuous tests on tobacco leaves, blood agar, bean seed germination and in Galleria mellonella larvae showed that strain NMA1017 has the potential to be a biocontrol agent. Greenhouse experiments with bean plants inoculated with P. polymyxa exhibited the efficacy to inhibit the growth of R. solani and P. ultimum. Furthermore, P. polymyxa NMA1017 showed plant growth promotion activities, such as siderophore synthesis and nitrogen fixation which can contribute to the crop development.

Altered metabolomic profile of dual-species biofilm: Interactions between Proteus mirabilis and Candida albicans
Publication date: January 2020
Source: Microbiological Research, Volume 230
Author(s): Didem Kart, Samiye Yabanoglu Ciftci, Emirhan Nemutlu
Abstract
In this study, we aimed to determine the interspecies interactions between Proteus mirabilis and Candida albicans. Mono and dual-species biofilms were grown in a microtiter plate and metabolomic analysis of the biofilms was performed. The effects of togetherness of two species on the expression levels of candidal virulence genes and urease and swarming activities of P.mirabilis were investigated. The growth of C.albicans was inhibited by P.mirabilis whereas the growth and swarming activity of P.mirabilis were increased by C.albicans. The inhibition of Candida cell growth was found to be biofilm specific. The alteration was not detected in urease activity. The expressions of EFG1HWP1 and SAP2 genes were significantly down-regulated, however, LIP1 was upregulated by P.mirabilis. In the presence of P.mirabilis carbonhydrates, amino acids, polyamine and lipid metabolisms were altered in C.albicans. Interestingly, the putrescine level was increased up to 230 fold in dual-species biofilm compared to monospecies C.albicans biofilm. To our knowledge, this is the first study to investigate the impact of each microbial pathogen on the dual microbial environment by integration of metabolomic data.

The "fighting wisdom and bravery" of tailed phage and host in the process of adsorption
Publication date: January 2020
Source: Microbiological Research, Volume 230
Author(s): Haojie Ge, Maozhi Hu, Ge Zhao, Yi Du, Nannan Xu, Xiang Chen, Xin’an Jiao
Abstract
In the process of bacteriophage and bacteria struggle, adsorption is the key factor to determine who is the winner. In this paper, the molecular mechanism of tailed bacteriophage recognition and adsorption to host and the strategy of “fighting wisdom and courage” between them are reviewed.

Identification of genes regulated by the two-component system response regulator NarP of Actinobacillus pleuropneumoniae via DNA-affinity-purified sequencing
Publication date: January 2020
Source: Microbiological Research, Volume 230
Author(s): Qiuhong Zhang, Qi Huang, Qiong Fang, Haotian Li, Hao Tang, Geng Zou, Dong Wang, Siqi Li, Weicheng Bei, Huanchun Chen, Lu Li, Rui Zhou
Abstract
Identifying the direct target genes of response regulators (RRs) of a bacterial two-component system (TCS) is critical to understand the roles of TCS in bacterial environmental adaption and pathogenesis. Actinobacillus pleuropneumoniae is an important respiratory bacterial pathogen that causes considerable economic losses to swine industry worldwide. The targets of A. pleuropneumoniae NarP (nitrate/nitrite RR), which is the cognate RR of the nitrate/nitrite sensor histidine kinase NarQ, are still unknown. In the present study, a DNA-affinity-purified sequencing (DAP-Seq) approach was established. The upstream regions of a total of 131 candidate genes from the genome of A. pleuropneumoniae were co-purified with the activated NarP protein. Electrophoretic mobility shift assay (EMSA) results confirmed the interactions of NarP with the promoter regions of five selected target genes, including dmsApgaAftpAcstA and ushA. The EMSA-confirmed target genes were significantly up-regulated in the narP-deleted mutant in the presence of additional nitrate, whilst the transcriptional changes were restored in the complemented strain. The NarP binding motif in the upstream regions of the target genes dmsA and ftpA were further identified and confirmed by EMSA using the truncated binding motif. The NarP binding sites were present in a total of 25.2% of the DNA fragments captured by DAP-Seq. These results demonstrated that the established DAP-Seq method is effective for exploring the direct targets of RRs of bacterial TCSs and that the A. pleuropneumoniae NarP could be a repressor in response to nitrate.

Evaluating glucose and mannose profiles in Candida species using quantum dots conjugated with Cramoll lectin as fluorescent nanoprobes
Publication date: January 2020
Source: Microbiological Research, Volume 230
Author(s): Weslley F. Oliveira, Mariana P. Cabrera, Natália R.M. Santos, Thiago H. Napoleão, Patrícia M.G. Paiva, Rejane P. Neves, Márcia V. Silva, Beate S. Santos, Luana C.B.B. Coelho, Paulo E. Cabral Filho, Adriana Fontes, Maria T.S. Correia
Abstract
Glycoconjugates found on cell walls of Candida species are fundamental for their pathogenicity. Laborious techniques have been employed to investigate the sugar composition of these microorganisms. Herein, we prepared a nanotool, based on the fluorescence of quantum dots (QDs) combined with the specificity of Cramoll lectin, to evaluate glucose/mannose profiles on three Candida species. The QDs-Cramoll conjugates presented specificity and bright fluorescence emission. The lectin preserved its biological activity after the conjugation process mediated by adsorption interactions. The labeling of Candida species was analyzed by fluorescence microscopy and quantified by flow cytometry. Morphological analyses of yeasts labeled with QDs-Cramoll conjugates indicated that C. glabrata (2.7 μm) was smaller when compared to C. albicans (4.0 μm) and C. parapsilosis sensu stricto (3.8 μm). Also, C. parapsilosis population was heterogeneous, presenting rod-shaped blastoconidia. More than 90% of cells of the three species were labeled by conjugates. Inhibition and saturation assays indicated that C. parapsilosis had a higher content of exposed glucose/mannose than the other two species. Therefore, QDs-Cramoll conjugates demonstrated to be effective fluorescent nanoprobes for evaluation of glucose/mannose constitution on the cell walls of fungal species frequently involved in candidiasis.

Outer membrane protein OmpU is related to iron balance in Vibrio alginolyticus
Publication date: January 2020
Source: Microbiological Research, Volume 230
Author(s): Tengteng Lv, Fa Dai, Qiuting Zhuang, Xuelin Zhao, Yina Shao, Ming Guo, Zhimeng Lv, Chenghua Li, Weiwei Zhang
Abstract
Outer membrane protein U (OmpU) is a major porin from Vibrio alginolyticus and has been considered a vaccine candidate against infection by V. alginolyticus. After pre-incubated with polyclonal antibody against rOmpU, V. alginolyticus showed a 78% decrease in extracellular iron level, suggesting that interruption of OmpU could increase intracellular iron level. The mRNA expression of ompU under iron-limited conditions was determined using real-time reverse transcriptase PCR. The mRNA level of ompU was downregulated to 0.27-, 0.036- and 0.019-fold after the addition of the iron chelator 2,2′-bipyridyl for 10, 30 and 60 min, respectively. In addition, the promoter of ompU contained a ferric uptake regulator (Fur) binding site, which revealed the potential regulation of ompU by Fur and iron. Fur from V. alginolyticus was purified and used for electrophoretic mobility shift assay. The result showed that in the absence of Fe2+, purified recombinant Fur could specifically bind to the promoter DNA of ompU, while in the presence of Fe2+, the binding of Fur and the promoter DNA was suppressed. Our study preliminarily explored the function of OmpU in iron balance in V. alginolyticus, and these findings were helpful in understanding iron metabolism in V. alginolyticus.

A script for initiating molecular biology studies with non-conventional yeasts based on Saccharomycopsis schoenii
Publication date: December 2019
Source: Microbiological Research, Volume 229
Author(s): Yeseren Kayacan, Adam Griffiths, Jürgen Wendland
Abstract
Non-conventional yeasts (NCYs), i.e. all yeasts other than Saccharomyces cerevisiae, are emerging as novel production strains and gain more and more attention to exploit their unique properties. Yet, these yeasts can hardly compete against the advanced methodology and genetic tool kit available for exploiting and engineering S. cerevisiae. Currently, for many NCYs one has to start from scratch to initiate molecular genetic manipulations, which is often time consuming and not straight-forward. More so because utilization of S. cerevisiae tools based on short-flank mediated homologous recombination or plasmid biology are not readily applicable in NCYs. Here we present a script with discrete steps that will lead to the development of a basic and expandable molecular toolkit for ascomycetous NCYs and will allow genetic engineering of novel platform strains. For toolkit development the highly efficient in vivo recombination efficiency of S. cerevisiae is utilized in the generation and initial testing of tools. The basic toolkit includes promoters, reporter genes, selectable markers based on dominant antibiotic resistance genes and the generation of long-flanking homology disruption cassettes. The advantage of having pretested molecular tools that function in a heterologous host facilitate NCY strain manipulations. We demonstrate the usefulness of this script on Saccharomycopsis schoenii, a predator yeast with useful properties in fermentation and fungal biocontrol.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου